Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Robust Solution for a Power-Train Mounting System for Automotive NVH Refinements

2015-01-14
2015-26-0140
Production variations of a heavy duty truck for its vibrations were measured and then analyzed through an Ishikawa diagram. Noise and Control factors of the truck idle shake were indentified. The major cause was found to be piece to piece variations of its power-train (PT) rubber mounts. To overcome the same, a new nominal level of the mount stiffness was sought based on minimization of a cost function related to vibration transmissibility and fatigue damage of the mounts under dynamic loadings. Physical prototypes of such mounts were proved to minimize the variations of the driver's seat shake at idling among various trucks of the same design. These learning's are useful for design of various subsystems or components to refine the full vehicle-Noise Vibration Harshness (NVH) at the robust design level.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Elastomer Isolator Gear Design to Meet Noise, Vibration and Durability of Internal Combustion Engine

2013-09-24
2013-01-2380
Success of the vehicle in the market depends on comfort provided while usage, which also includes noise, vibration and harshness (NVH). In order to achieve comfort level, the NVH levels have to be as low as possible. Powertrain is the main source of NVH, in which internal combustion engine consists of crank shaft and balancer shaft. Crank shaft gear is connected and driven by crank shaft and balanced by integral eccentric mass coupled with gear. Balancer shaft is used for additional balancing of rotating masses. Pair of crank shaft and balancer shaft gears generates noise and vibration when unbalance in the system and backlash in the gears increase while usage. The practice of interposing a vibration isolator on the surface of gear has been so far resorted for preventing transmission of vibration, therefore reduction in noise. In the work presented, balancer gear was made with sandwich design to reduce noise. Sandwich design comprises of Inner hub and outer ring with lug projections.
Technical Paper

Halogen Free Synthetic Elastomer Blend to Meet Properties of Fuel Hose Outer Cover (Return Line) Application

2011-09-13
2011-01-2233
Diesel engine fuel hose return line is considered as a low pressure line and consists of two layers. The inner layer is used to carry the excess fuel, thereby hose material shall have resistance to fuel and its residues. The outer layer is used to protect inner layer from heat, ozone and oil spillage, thereby outer cover material shall have resistance against the heat, ozone and engine oil. Currently NBR PVC, NBR and FKM materials have been used as inner layer materials in diesel engine fuel hose outer cover application, according to service temperature. Halogen contained CSM material has been used for outer cover application and the production of CSM material was withdrawn by one of the major manufacturer recently. Current global challenge is to use environment friendly material in vehicle components to make hazardous free environment. To replace CSM material, which contains Halogen, the available options are CPE, CR, HNBR and AEM materials.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Journal Article

Study of Dynamics Stiffness and Shape Factor of Rubber Mounts to Address High-Frequency Resonance Issue in Electric Powertrain Mounting System

2020-09-25
2020-28-0341
Electric motor mounts resonate at high frequency in the range of 600 to 1000Hz with motor excitation frequency resulting in isolation performance deterioration. There is a selection process of motor mounts such that the force-transfer under transient torque reduced and also avoids high-frequency resonance. The rubber dynamic stiffness plays a significant role in excitation frequency. Rubber shape factor and compound directly contribute towards the dynamic stiffness properties of the mount. Isolation efficiency depends on force transfer to the body and resonance phenomenon. In this paper, the rubber shape of motor mounts, which affect progression characteristics as well as high-frequency resonance, is discussed. The wings-effect of rubber bushes discussed which can be tuned to get the desired frequency shift in order to avoid resonance.
X