Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Bus NVH Refinement: A Journey towards Comfortable Future

2021-09-22
2021-26-0272
The future of bus transit in new millennium is promising. This optimism is based on an anticipated long-term slowdown in growth of suburbs and revitalization of central cities. It reflects and escalates the public concern with traffic congestion, sprawl and pollution. This calls for double the use of public transport to address above issues. It calls for changing the mind-set of society towards public transports like buses, coaches etc. This could happen if bus design ensures right comfort, safety and TCO by ensuring refined bus transport. Hence, it is responsibility of OEMs to provide the new generation buses and coaches, which will ensure the public demands of comforts in terms of NVH refinement. This paper covers the unique approach used to convert the existing bus NVH refinement to next level as a short-term solution and with the intention of articulating NVH strategies for new generation bus development.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Design of Hybrid Air Conditioning System Using Phase Change Material for Commercial Sleeper Vehicles

2022-11-09
2022-28-0448
Unfavorable climates, fatigue, safety & deprived sleep of driver’s leads to use of AC system for their quick thermal comfort during night with engine ON. This scenario is very critical from a human’s safety & vehicle functionality point of view. This also consumes an additional 10-15% of fuel requirements in AC running conditions. So, to address the social problems of driver’s sleep and pollution-free environment by reducing the use of fossil fuels, there is a need for alternative techniques for air cooling which work during engine OFF condition. Various alternative options for air cooling have been reviewed. Accordingly, the packaging flexibility of phase change material (PCM) technology makes it easy to implement, yet effective usage of large quantity stored PCM, needs optimization. This paper proposes a design of a hybrid air conditioning system for sleeper commercial vehicles using a combined conventional compression and phase change material.
Technical Paper

Development of Internal Heat Exchanger for Truck AC System Application

2022-11-09
2022-28-0453
This paper explains about the design & development of IHX for HCVs segment and vehicle level validation to get the actual benefits with this technology. Moreover, the data observed during vehicle testing also indicates the improvement in AC System Performance. This experiment was done on HCV platform vehicle with multiple actual test conditions with two designs of IHX. Final result shows the optimized AC system design to achieve better efficiency.
Technical Paper

Effect of Normalizing Heat Treatment on Material and Mechanical Properties of High Strength Steel Tube for Lift axle of Commercial Vehicles

2022-10-05
2022-28-0351
Lift axles of heavy commercial vehicles are deployed to handle increased payload. These axles of Commercial vehicles are made of low alloy carbon steel materials. Lift axles are designed in hollow condition for weight reduction opportunity. Two types of tube materials are used for the manufacturing of lift axles. These are either Cold Drawn Seamless (CDS) tubes or Hot Finished Seamless (HFS) tube material. The vanadium micro-alloyed steel grade, 20MnV6 is an excellent choice for the manufacturing of lift axles. The 20MnV6 has favorable mechanical properties for lift axles and also offers good weldability. However, lift axles made of 20MnV6 when manufactured in hot-finished condition, shows significant scatter in terms of durability performance. This requires further heat treatment of 20MnV6 to be deployed for reducing the scatter in the material properties to reduce scatter in durability performance and thus increasing the reliability of the lift axles.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Hydropneumatic Suspension Design for Light Military Tracked Vehicle

2012-09-24
2012-01-1911
In this paper hydropneumatic suspension system design methodology for light military tracked vehicle is discussed in detail. A guide to locate the major impact factor & its effect on the system level design is demonstrated. Spring & damping characteristics of hydropneumatic suspension have significant bearing on the tracked vehicle mobility characteristics. A methodology has been derived to optimize the kinematics of the suspension system by optimizing the load transferring leverage ratio resulting in enhanced system life. The paper also discusses the analytical method used for prediction of spring & damping characteristics and the factors affecting them.
Technical Paper

Improving Fuel Economy of Commercial Vehicle by Introducing Optimized Electro-Magnetically Coupled Fan Drive

2016-09-27
2016-01-8054
Increasing fuel cost and constant pressure to maximize the fuel economy are forcing OEMs in India to look for alternate engine cooling mechanism which will minimize the power take off from the engine without affecting the system reliability. Aim of this paper is to analyze the potential benefit of incorporating Electro-magnetic fan (EMF) drive in terms of fuel economy and reduced load on the engine. These benefits were compared with the conventional viscous coupled fan drive system. In vehicle with viscous coupling, fan RPM is based on the ram air temperature at coupling face which takes heat from turbo-charged air and coolant. On the other hand, EMF drive have a separate controller and control the fan RPM based on the coolant temperature enabling itself to respond directly to changes in the heat load as compared to viscous coupling having indirect representation of Coolant/charged air temperature.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Steering Linkage Induced Vehicle Pull during Straight Line Braking

2012-09-24
2012-01-1916
The vehicle pull (sideways) is a complex outcome of many parameters in an automobile vehicle. This is mainly due to steering, suspension, brake, wheels and chassis parameters. The road conditions like road camber also plays an important role in vehicle pull behavior. All efforts are put in design and manufacturing processes to maintain controlled vehicle pull in normal driving condition. Even though normal vehicle pull seems to be in acceptance limit (subjectively), its intensity increases many folds at the time of harsh braking. In these kind of panic situations where driver firmly holds on the steering wheel, it is expected that the vehicle should stop without deviating too much sideways from its intended straight line path to avoid any kinds of accidents. This work is an outcome of systematic study carried out to understand the root cause of brake pull as a field complaint on current production vehicles and adopting best possible solutions to minimize the brake pull.
X