Refine Your Search

Topic

Author

Search Results

Technical Paper

A Closed System Simulation based Methodology to Accomplish Advance Engine Calibrations towards CAFE

2021-09-22
2021-26-0352
The automotive engineering fraternity is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. The stringent CAFÉ standards for CO2 emissions are expected to become further demanding as time progresses. Indian OEM engineering experts have been considering various technology options to improve vehicle fuel economy. However, the time and costs associated with the development of these strategies and technologies remains a point of major concern and challenge. The potential of a technology to reduce fuel consumption can be estimated in three basic ways. One approach involves developing an actual prototype engine and vehicle with the technologies under evaluation, performing the actual measurements. Some variability from test to test is although expected, this method is the most accurate but time consuming and very expensive.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Approach to Achieve Weight Reduction for Sprayable Vinyl Plastisol Sealer, on Automotive Underbody

2022-10-05
2022-28-0371
Vehicles subjected to Indian duty cycles have to undergo extreme environments & road terrains, stone chipping. Underbody wear from this is one of the most significant forms of deleterious corrosion. Automobile companies deal with this by going for exotic & expensive underbody coating, which compositionally are "Polyvinyl Plastisol also popularly known as Poly Vinyl Chloride (PVC)". Across automotive industry, the stone chipping is prevented via applying PVC-coating to the extent of 800-1000 microns. The application of PVC-material throughout the vehicle underbody will add approximately 8-12 Kgs of weight. Our objective was to reduce the weight of applied PVC-material.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Approach to Model Thermistor Based AC Compressor Cut-OFF/Cut-IN Phenomenon in 1D Simulation of Mobile Air Conditioning

2019-01-09
2019-26-0287
This paper documents the approach followed to simulate the physical phenomenon of thermistor based AC compressor Cut-OFF/Cut-IN (AC compressor cycling) in 1-Dimensional Computer Aided Engineering (1D CAE) to enable Mobile Air Conditioning (MAC) performance prediction at different ambient conditions. Thermistor based AC compressor cycling logic is incorporated in MAC systems to prevent ice formation at evaporator core and liquid refrigerant flow to AC compressor. Currently, during MAC system performance simulation over a transient drive cycle, the 1D models are able to predict cabin cooldown performance for severe ambient conditions (>40°C, high solar load) with >95% accuracy, as in these cases AC compressor cycling due to thermistor doesn’t occur at higher ambient.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Cost Effective Techniques to Maximize Benefits of Entry Segment Full Hybrid Electric Vehicle without Engine Downsizing

2015-01-14
2015-26-0113
Hybridization with engine downsizing is a regular trend to achieve fuel economy benefits. However this leads to a development of new downsized engine which is very costly and time consuming process, also engine downsizing demands for expensive higher power electric system to meet performance targets. Various techniques like gear ratio optimization, reducing number of gears, battery size and control functionalities optimization have been evaluated for maximum fuel economy keeping system cost very low and improving vehicle performance. With optimized gear ratios and reduced number of gears for parallel hybrid, it is possible to operate the engine in the best efficiency zones without downsizing. Motor is selected based on power to weight ratio, gradient requirements, improved acceleration performance and top speed requirement of vehicle in EV mode.
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

Design Methodology of New Generation Noiseless Antiroll Bar Bushes for Car Suspension

2015-01-14
2015-26-0077
In this paper, design methodology of antiroll bar bush is discussed. Typical antiroll bar bushes have slide or slip mechanism, to facilitate the relative motion between ARB and bush. Inherently, this relative motion causes wear and noise of bush. To eliminate stated failure modes, the next generation bushes have been developed, which are using torsion properties instead of slip function. These bushes are already being used in various vehicles. This paper focuses on developing the simple mathematical model, design approach and optimization of ARB bushes. Also, comparison study is presented exploring, the differences and design criteria's between conventional and new generation anti-roll bar bushes.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Fundamental Understanding of Phase Change Mechanism of Refrigerant Flow in HVAC Pipe

2021-09-15
2021-28-0139
In this present investigation an attempt has been made to simulate the refrigerant flow through pipes using Computational Fluid Dynamics (CFD) to observe liquid refrigerant R134a flashing phenomenon using multi-phase model in ANSYS Fluent. In a vehicle HVAC piping system the refrigerant flows under a certain operating condition and pipe packaging. When the vehicle is kept in idle condition there is a possibility that a local pressure drop may occur due to change in pipe configuration or change in operating conditions. This leads to phase change and it can be one of the factor which causes noise and vibrations in the refrigerant pipe. The unwanted noise created due to refrigerant fluid phase change inside HVAC pipe can be annoying to end user. Prediction of refrigerant flow noise through HVAC pipes is more challenging and a time consuming process.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Methodology to Assess Headlamp Performance in Virtual Environment and its Correlation with Real World Driving Conditions

2021-09-22
2021-26-0130
Automotive exterior lighting systems has to meet several regulatory requirements & manufacture specific internal standards to achieve desired performance. These test specifications are usually generic in nature and formulated mainly to validate the standalone product under standard laboratory conditions. Most of the time these specifications are common for entire vehicle portfolio. The rationale of these standards is to define the basic illuminance in the safe braking distance. Thus, however, using the requirements in these standards to evaluate the performance of front lighting systems is only qualitative. Research on working out method for quantitative evaluation of front lighting system is necessary [1] In practice, however, the luminance levels at road surfaces are usually very dynamic; depend largely on the variations in vehicle parameters, ambient weather conditions, road surface uniformities and effects of light intensity & color contrasts on target visibility.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
Technical Paper

Modelling of Internal Manifold Flow Distribution in PEMFC

2021-09-22
2021-26-0340
In a Polymer Electrolyte Membrane Fuel Cell (PEMFC) uniform reaction rate is very crucial to obtain maximum performance and to maintain the life of the cells. In PEMFC stack manifold plays an important role in maintaining uniform flow distribution of reactants (hydrogen, air and coolant) to the cells. Many studies have been carried out for examining the effect of manifold on flow distribution and pressure drop. Most studies are limited to small scale level (5 to 10 kW stack). This paper describes large scale fuel cell stack manifold design, flow distribution and pressured contours which is suitable for automotive vehicles (30 to 50 kW). The design consists of simplified scaled up fuel cell stack with cells connected in the series. Modelled the effect of internal manifold geometry of the fuel cell stack on pressure and flow distribution to the cells.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Multi-Axial Road Simulation for Component Level Validation of Engine Mount Structure and Elastomer

2021-09-22
2021-26-0452
Today, reducing the vehicle development time is a very crucial task. In the early development stages, the limited time and few vehicle prototypes are available for validation. In such scenarios, durability validation of different design iterations of critical components like engine mounts, with respect to the real road usage is a challenge. Road simulation testing in a laboratory is a reliable approach to fatigue and durability tests for the evaluation of platforms, components and subassemblies. Durability evaluation of engine mount is, generally, performed either at assembly level, using multi-axial road simulation approach or at component level, using uniaxial sinusoidal load testing. The new testing approach here allows testing of engine mounts at component level using road simulation approach by applying multi-axial loads or deflections as per the real road usage conditions.
X