Refine Your Search

Topic

Search Results

Journal Article

A New Cavitation Algorithm to Support the Interpretation of LIF Measurements of Piston Rings

2020-04-14
2020-01-1091
Laser induced fluorescence (LIF) is used to investigate oil transport mechanisms under real engine conditions. The engine oil is mixed with a dye that can be induced by a laser. The emitted light intensity from the dye correlates with the residual oil at the sensor position and the resulting oil film thicknesses can be precisely determined for each crank angle. However, the general expectation is not always achieved, e.g. an exact representation of piston ring barrel shapes. In order to investigate the responsible lubrication effects of this behavior, a new cavitation algorithm for the Reynolds equation has been developed. The solution retains the mass conservation and does not use any switch function in its mathematical approach. In contrast to common approaches, no vapor-liquid ratio is used, but one or several bigger bubbles are approximated, as have been observed in other experiments already.
Technical Paper

Algorithm-Calculated Multiple Injection Patterns to Meet Future Requirements to Direct-Injection Spark Ignited Engines

2022-08-30
2022-01-1068
Future emission regulations require further development for internal combustion engines operating on gasoline. To comply with such regulations and simultaneously improve fuel efficiency, major development trends are found in reduced displacements, increased compression ratios and turbocharging. To counteract such engines’ increased tendencies to knocking combustion, direct fuel injection systems are necessarily applied. Compared to standard port fuel injection, direct injection systems cause increased particle emissions. State-of-the-art magnet-driven gasoline direct injectors are capable of realizing various injection events of small injected mass per event and short dwell time between one another. Thereby, they facilitate multiple injection strategies, able to overcome the drawbacks of direct injection systems in relation to exhaust emissions. However, the full potential of multiple injection strategies is not yet taken advantage of.
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Artificial Intelligence for Combustion Engine Control

1996-02-01
960328
Existing electronic combustion engine control systems only guarantee a desired air-to-fuel-ratio λ in stationary operation. In order to achieve the desired λ also in in-stationary use of the engine, it is necessary to use new-technology-based control systems. Artificial Intelligence provides methods to cope with difficulties like wide operation range, unknown nonlinearities and time delay. We will propose a strategy for control of a Spark Ignition Engine to determine the mass of air inside the combustion chambers with the highest accuracy. Since Neural Networks are universal approximators for multidimensional nonlinear static functions they can be used effectively for identification and compensation purposes of unknown nonlinearities in closed control loops.
Technical Paper

Clarification of Fuel and Oil Flow Behaviour Around the Piston Rings of Internal Combustion Engines: Visualization of Oil and Fuel Behaviour by Photochromism in Gasoline Engine Under Transient Operating Conditions

2023-09-29
2023-32-0046
Photochromism is a reversible color change phenomenon based on chemical reactions caused by light illumination. In the present study, this technique is applied to visualize the lubricating oil and fuel around the piston rings in the gasoline engine. The oil film was colored with a UV laser and photographed by synchronizing the shutter of a high-speed camera with a flashlight. The color density was evaluated as a value of absorbance, calculated from images taken at two different wavelengths and two different times before and after the coloration. The authors performed photochromism visualization experiments in an engine under motored operation. However, using photochromic dyes that are robust to temperature changes makes it possible to visualize the engine under fired operation. The experiment was conducted mainly by switching to the motored operation for a fixed time between the fired operations.
Technical Paper

Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation

2017-03-28
2017-01-0543
This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
Technical Paper

Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine

2021-09-21
2021-01-1204
On the way to a climate-neutral mobility, synthetic fuels with their potential of CO2-neutral production are currently in the focus of internal combustion research. In this study, the C1-fuels methanol (MeOH), dimethyl carbonate (DMC), and methyl formate (MeFo) are tested as pure fuel mixtures and as blend components for gasoline. The study was performed on a single-cylinder engine in two configurations, thermodynamic and optical. As pure C1-fuels, the previously investigated DMC/MeFo mixture is compared with a mixture of MeOH/MeFo. DMC is replaced by MeOH because of its benefits regarding laminar flame speed, ignition limits and production costs. MeOH/MeFo offers favorable particle number (PN) emissions at a cooling water temperature of 40 °C and in high load operating points. However, a slight increase of NOx emissions related to DMC/MeFo was observed. Both mixtures show no sensitivity in PN emissions for rich combustions. This was also verified with help of the optical engine.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Experimental Investigation of a Control Strategy Based on Combustion Stability and Combustion Phasing for a Multi-Cylinder Engine with Fueled Pre-Chambers and Cylinder Pressure Transducers

2021-04-06
2021-01-0639
One way of increasing the efficiency of a gasoline engine is to operate it in lean-burn mode. However, a lean mixture in the combustion chamber reduces its ignitability, which leads to poor combustion stability and even misfires. This investigation presents a solution to this problem using an active pre-chamber for each cylinder, into which fuel can be injected separately and in which ignition takes place. This increases the ignition energy in the main combustion chamber, thus enabling stable combustion. Cylinder-specific feedback control of the fuel quantity injected into the pre-chambers was implemented on the basis of measured cylinder pressures so as to compensate for injector component deviations, achieve maximum efficiency, and prevent increased emissions. Since combustion delay and burn duration are dependent on the fuel mass injected into the pre-chamber, an additional feedback control for the center of combustion (MFB50) was integrated along with the fuel quantity controller.
Technical Paper

Experimental Investigation on the Influence of Brake Mean Effective Pressures up to 30 bar on the Behavior of a Large Bore Otto Gas Engine

2019-12-19
2019-01-2224
For large bore Otto gas engines a high specific power output and therefore high engine load promises a rise in engine efficiency on one hand and on the other hand a reduction of the performance-related investment. However, this can negatively affect the emissions performance, operating limits especially in regards to knocking, and component life. For this reason at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM) experiments with a 4.77 l single-cylinder research engine were carried out to investigate the boundary conditions, potentials and downsides of combustion processes with a brake mean effective pressure beyond current series engines and higher than 30 bar. The objective in this investigations was to achieve BMEP > 30 bar with an engine configuration that widely represents the current series-production status. Hence, an unscavenged prechamber spark plug, a series Piston and Valve timing were used.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

Highly Efficient and Clean Combustion Engine for Synthetic Fuels

2023-04-11
2023-01-0223
This paper provides an overview of possible engine design optimizations by utilizing highly knock-resistant potential greenhouse gas (GHG) neutral synthetic fuels. Historically the internal combustion engine was tailored to and highly optimized for fossil fuels. For future engine generations one of the main objectives is to achieve GHG neutrality. This means that either carbon-free fuels such as hydrogen or potential greenhouse gas neutral fuels are utilized. The properties of hydrogen make its use challenging for mobile application as it is very diffusive, not liquid under standard temperature/pressure and has a low volumetric energy density. C1-based oxygenated fuels such as methanol (MeOH), dimethyl carbonate (DMC) and methyl formate (MeFo) have properties like conventional gasoline but offer various advantages. Firstly, these fuels can be produced with renewable energy and carbon capture technologies to be GHG neutral.
Technical Paper

Identification of Aging Effects in Common Rail Diesel Injectors Using Geometric Classifiers and Neural Networks

2016-04-05
2016-01-0813
Aging effects such as coking or cavitation in the nozzle of common rail (CR) diesel injectors deteriorate combustion performance. This is of particular relevance when it comes to complying with emission legislation and demonstrates the need for detecting and compensating aging effects during operation. The first objective of this paper is to analyze the influence of worn nozzles on the injection rate. Therefore, measurements of commercial solenoid common rail diesel injectors with different nozzles are carried out using an injection rate analyzer of the Bosch type. Furthermore, a fault model for typical aging effects in the nozzle of the injector is presented together with two methods to detect and identify these effects. Both methods are based on a multi-domain simulation model of the injector. The needle lift, the control piston lift and the pressure in the lower feed line are used for the fault diagnosis.
Journal Article

Identification of In-Cylinder Aerosol Flow Induced Emissions due to Piston Ring Design in a DISI Single Cylinder LV Engine Using Oxygenated Synthetic Fuels

2021-04-06
2021-01-0625
In the near future, pollutant and GHG emission regulations in the transport sector will become increasingly stringent. For this reason, there are many studies in the field of internal combustion research that investigate alternative fuels, one example being oxygenated fuels. Additionally, the design of engine components needs to be optimized to improve the thresholds of clean combustion and thus reduce particulates. Simulations based on PRiME 3D® for dynamic behaviors inside the piston ring group provide a guideline for experimental investigation. Gas flows into the combustion chamber are controlled by adjusting the piston ring design. A direct comparison of regular and synthetic fuels enables to separate the emissions caused by oil and fuel. This study employed a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo).
Technical Paper

Investigation of the High-Pressure-Dual-Fuel (HPDF) combustion process of natural gas on a fully optically accessible research engine

2019-12-19
2019-01-2172
In the “high-pressure-dual-fuel” (HPDF) combustion process, natural gas is directly injected into the combustion chamber with high pressure at the end of the compression stroke, and burned in a diffusion flame similar to conventional diesel combustion. As natural gas does not self-ignite when injected into hot air, a small amount of diesel fuel is injected directly before the gas injection to provide an ignition source for the gas jets. The HPDF combustion process has the potential to substantially reduce methane slip compared to today’s state of the art premixed lean burn gas engines, and furthermore, phenomena like knocking or misfire can be avoided completely. In this paper, the influences of in-cylinder air density and swirl motion on HPDF combustion is studied via high-speed recordings in a fully optically accessible 4.8 Liter single-cylinder research engine.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Journal Article

Optimal Injection Strategies to Compensate for Injector Aging in Common Rail Fuel Systems

2018-04-03
2018-01-1160
Aging effects such as coking or erosive damage that occur in fuel injection nozzles are known to deteriorate the engine performance. This article proposes an optimization method to compensate for injector aging and to control the combustion behavior over engine lifetime by adapting the injection strategy. First, a control-oriented combustion model is presented, which takes the condition of the injection nozzle into account. In combination with a simulation model of the entire fuel injection system from a previous study, the model is capable of predicting the heat release rate (HRR) at different working conditions. Measurements with a single-cylinder diesel engine were performed, using injectors with modified and aged nozzles, to validate the proposed combustion model and particularly to analyze the influence of injector aging. Using the simulation model, optimal injection strategies were obtained by applying a line search optimization scheme to recover a reference HRR trajectory.
X