Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Journal Article

A New Cavitation Algorithm to Support the Interpretation of LIF Measurements of Piston Rings

2020-04-14
2020-01-1091
Laser induced fluorescence (LIF) is used to investigate oil transport mechanisms under real engine conditions. The engine oil is mixed with a dye that can be induced by a laser. The emitted light intensity from the dye correlates with the residual oil at the sensor position and the resulting oil film thicknesses can be precisely determined for each crank angle. However, the general expectation is not always achieved, e.g. an exact representation of piston ring barrel shapes. In order to investigate the responsible lubrication effects of this behavior, a new cavitation algorithm for the Reynolds equation has been developed. The solution retains the mass conservation and does not use any switch function in its mathematical approach. In contrast to common approaches, no vapor-liquid ratio is used, but one or several bigger bubbles are approximated, as have been observed in other experiments already.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Journal Article

A Numerical and Experimental Evaluation of Open Jet Wind Tunnel Interferences using the DrivAer Reference Model

2016-04-05
2016-01-1597
The open jet wind tunnel is a widespread test section configuration for developing full scale passenger cars in the automotive industry. However, using a realizable nozzle cross section for cost effective aerodynamic development is always connected to the presence of wind tunnel effects. Wind tunnel wall interferences which are not present under open road conditions, can affect the measurement of aerodynamic forces. Thus, wind tunnel corrections may be required. This work contains the results of a CFD (Computational Fluid Dynamics) approach using unsteady Delayed Detached Eddy Simulations (DDES) to evaluate wind tunnel interferences for open jet test sections. The Full Scale DrivAer reference geometry of the Technical University of Munich (TUM) using different rear end shapes has been selected for these investigations.
Journal Article

A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar

2019-04-02
2019-01-0134
The performance of environment perceiving sensors such as e.g. lidar, radar, camera and ultrasonic sensors is safety critical for automated driving vehicles. Therefore, one has to assess the sensors’ performance to assure the automated driving system’s safety. The performance of these sensors is however to some degree sensitive towards adverse weather conditions. A challenge is to quantify the effect of adverse weather conditions on the sensor’s performance early in the development of an automated driving system. This challenge is addressed in this work for lidar sensors. The lidar equation was previously employed in this context to derive estimates of a lidar’s maximum range in different weather conditions. In this work, we present a stochastic simulation framework based on a probabilistic extension of the lidar equation, to quantify the effect of adverse rainfall conditions on a lidar’s raw detection performance.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Technical Paper

Advanced Design and Validation Techniques for Electronic Control Units

1998-02-23
980199
Increasing demand for dynamically controlled safety features, passenger comfort, and operational convenience in upper class automobiles requires an intensive use of electronic control units including software portions. Modeling, simulation, rapid prototyping, and verification of the software need new technologies to guarantee passenger security and to accelerate the time-to-market of new products. This paper presents the state-of-the-art of the design methods for the development of electronic control unit software at BMW. These design methods cover both discrete and continuous system parts, smoothly integrating the respective methods not merely on the code level, but on the documentation, simulation, and design level. In addition, we demonstrate two modeling and prototyping tools for discrete and continuous systems, namely Statemate and MatrixX, and discuss their advantages and drawbacks with respect to necessary prototyping demands.
Technical Paper

Advanced Lighting Simulation (ALS) for the Evaluation of the BMW System Adaptive Light Control (ALC)

2002-07-09
2002-01-1988
The Advanced Lighting Simulation (ALS) is a development tool for systematically investigating and optimizing the Adaptive Light Control (ALC) system to provide the driver with improved headlamps and light distributions. ALS is based on advanced CA-techniques and modern validation facilities. To improve night time traffic safety the BMW lighting system ALC has been developed and optimized with the help of ALS. ALC improves the headlamp illumination by means of continuous adaptation of the headlamps according to the current driving situation and current environment. BMW has already implemented ALC prototypes in real vehicles to demonstrate the advantages on the real road.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Application of a New Method for On-Line Oil Consumption Measurement

1999-10-25
1999-01-3460
Fast and exact measurement of engine oil consumption is a very difficult task. Our aim is to achieve this measurement at a common test bed without engine modifications. We resolved this problem with a new technique using Laser Mass Spectrometry to detect appropriate tracers in the raw engine exhaust. The tracers are added to the engine oil. to the engine oil. For detection of these tracers we use a Laser Mass Spectrometer (LAMS). This is a combination of resonant laser ionization (with an all-solid-state laser) and Time-of-Flight Mass Spectrometry. Currently this is the only way to detect oil originated molecules (like our tracers) in the raw exhaust very fast (50 Hz) and sensitive (ppb-region). Thus, engine mapping of oil consumption over load and speed can be performed in 1-2 days with about 90 measurements. Even measurement during dynamic engine operation is possible, but not quantitative (due to the lack of information about dynamic exhaust gas mass flow).
Technical Paper

Artificial Intelligence for Combustion Engine Control

1996-02-01
960328
Existing electronic combustion engine control systems only guarantee a desired air-to-fuel-ratio λ in stationary operation. In order to achieve the desired λ also in in-stationary use of the engine, it is necessary to use new-technology-based control systems. Artificial Intelligence provides methods to cope with difficulties like wide operation range, unknown nonlinearities and time delay. We will propose a strategy for control of a Spark Ignition Engine to determine the mass of air inside the combustion chambers with the highest accuracy. Since Neural Networks are universal approximators for multidimensional nonlinear static functions they can be used effectively for identification and compensation purposes of unknown nonlinearities in closed control loops.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Technical Paper

BMW-ROOM An Object-Oriented Method for ASCET

1998-02-23
981014
This paper presents an object-oriented method customized for a tool-assisted development of car software components. Tough market conditions motivate smart software development. ASCET SD is a tool to generate target code from graphic specifications, avoiding costly programming in C. But ASCET lacks guidelines on what to do, how to do it, in what order, like a fully equipped kitchen without a cooking book. Plans to employ the tool for BMW vehicle software sparked off demand for an adequate, object-oriented real-time methodology. We show how to scan the methodology market in order to adopt an already existing method for this purpose. The result of the adaptation of a chosen method to ASCET SD is a pragmatic version of ROOM, which we call BROOM. We present a modeling guidebook that includes process recommendations not only for the automotive sector, but for real-time software development in general.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Technical Paper

Challenges in Vibroacoustic Vehicle Body Simulation Including Uncertainties

2020-09-30
2020-01-1571
During the last decades, big steps have been taken towards a realistic simulation of NVH (Noise Vibration Harshness) behavior of vehicles using the Finite Element (FE) method. The quality of these computation models has been substantially increased and the accessible frequency range has been widened. Nevertheless, to perform a reliable prediction of the vehicle vibroacoustic behavior, the consideration of uncertainties is crucial. With this approach there are many challenges on the way to valid and useful simulation models and they can be divided into three areas: the input uncertainties, the propagation of uncertainties through the FE model and finally the statistical output quantities. Each of them must be investigated to choose sufficient methods for a valid and fast prediction of vehicle body vibroacoustics. It can be shown by rough estimation that dimensionality of the corresponding random space for different types of uncertainty is tremendously high.
Technical Paper

Clarification of Fuel and Oil Flow Behaviour Around the Piston Rings of Internal Combustion Engines: Visualization of Oil and Fuel Behaviour by Photochromism in Gasoline Engine Under Transient Operating Conditions

2023-09-29
2023-32-0046
Photochromism is a reversible color change phenomenon based on chemical reactions caused by light illumination. In the present study, this technique is applied to visualize the lubricating oil and fuel around the piston rings in the gasoline engine. The oil film was colored with a UV laser and photographed by synchronizing the shutter of a high-speed camera with a flashlight. The color density was evaluated as a value of absorbance, calculated from images taken at two different wavelengths and two different times before and after the coloration. The authors performed photochromism visualization experiments in an engine under motored operation. However, using photochromic dyes that are robust to temperature changes makes it possible to visualize the engine under fired operation. The experiment was conducted mainly by switching to the motored operation for a fixed time between the fired operations.
Technical Paper

Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation

2017-03-28
2017-01-0543
This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
Technical Paper

Comparison of Deep Learning Architectures for Dimensionality Reduction of 3D Flow Fields of a Racing Car

2023-04-11
2023-01-0862
In motorsports, aerodynamic development processes target to achieve gains in performance. This requires a comprehensive understanding of the prevailing aerodynamics and the capability of analysing large quantities of numerical data. However, manual analysis of a significant amount of Computational Fluid Dynamics (CFD) data is time consuming and complex. The motivation is to optimize the aerodynamic analysis workflow with the use of deep learning architectures. In this research, variants of 3D deep learning models (3D-DL) such as Convolutional Autoencoder (CAE) and U-Net frameworks are applied to flow fields obtained from Reynolds Averaged Navier Stokes (RANS) simulations to transform the high-dimensional CFD domain into a low-dimensional embedding. Consequently, model order reduction enables the identification of inherent flow structures represented by the latent space of the models.
X