Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

A Thermal-Fatigue Life Assessment Procedure for Components under Combined Temperature and Load Cycling

2013-04-08
2013-01-0998
High-temperature thermal-mechanical systems are considered as an indispensable solution to modern vehicle emission control. Such systems include advanced engines, manifolds, thermal regeneration systems, and many other systems. Creep, fatigue, oxidation, or their combinations are the fundamental underlying material degradation and failure mechanisms in these systems subjected to combined thermal and mechanical loadings. Therefore, the basic understanding and modeling of these mechanisms are crucial in engineering designs. In this paper, the state-of-the-art methods of damage/failure modeling and life assessment for components under thermal-fatigue loading, are reviewed first. Subsequently, a new general life assessment procedure is developed for components subjected to variable amplitude thermal- and mechanical- loadings, with an emphasis on hold-time effect and cycle counting.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Characterization and Ranking of Materials for Exhaust Systems Under Thermal-Cycling Condition

2013-04-08
2013-01-0512
There is a broad range of material choices for on-road and off-road exhaust systems. The final selection of the materials depends on the balance of engineering performance of the materials and the cost. Thermal-cycling resistance of exhaust materials is an extremely important criterion for the long-term durability and reliability performance of very high temperature exhaust components and systems. To optimize the thermal-cycling resistance and cost of those materials, a selection matrix must be established. Several material evaluation and selection matrices are already available, however, these are not sufficient to meet the industry needs. The current procedure of material selection is essentially based on the trial-and-error approach, which is not efficient in the current market environment. In this paper, a general rational approach for thermal-cycling resistance characterization and ranking is demonstrated.
Journal Article

Correlation Measures and Their Applications in Structural Dynamics and Data Analyses

2014-09-30
2014-01-2307
This paper reviews the correlation concepts and tools available, with the emphasis on their historical origins, mathematical properties and applications. Two of the most commonly used statistical correlation indicators, i.e., modal assurance criterion (MAC) for structural deformation pattern identification/correlation and the coefficient of determination (R2) for data correlation are investigated. The mathematical structure of R2 is critically examined, and the physical meanings and their implications are discussed. Based on the insights gained from these analyses, a data scatter measure and a dependency measure are proposed. The applications of the measures for both linear and nonlinear data are also discussed. Finally, several worked examples in vehicle dynamics analysis and statistical data analyses are provided to demonstrate the effectiveness of these concepts.
Technical Paper

Corrosion-Fatigue Modeling and Materials Performance Ranking

2018-04-03
2018-01-1409
Corrosion-fatigue (CF) and stress corrosion cracking (SCC) have long been recognized as the major degradation and failure mechanisms of engineering materials under combined mechanical loading and corrosive environments. How to model and characterize these failure phenomena and how to screen, rank, and select materials in corrosion-fatigue and stress corrosion cracking resistance is a significant challenge in the automotive industry and many engineering applications. In this paper, the mathematical structure of a superposition-theory based corrosion-fatigue model is investigated and possible closed-form and approximate solutions are sought. Based on the model and the associated solutions and test results, screening and ranking of the materials in fatigue, corrosion-fatigue are discussed.
Technical Paper

Design Curve Construction Based on Two-Stress Level Test Data

2012-04-16
2012-01-0069
A design curve, such as a fatigue design S-N curve, is required in engineering design processes. The design curve is usually constructed by analyzing test data, which often exhibit relatively large scatter. For assumed linear test data, two-stress level test plan is commonly used for accelerated life testing (ALT) and subsequent design curve construction. In this paper, based on the two-stress level test plan, a tolerance limit approach is adopted to develop a simple design curve construction procedure. The predicted results from the new method are compared with that of other methods. The advantage of the new method is demonstrated by analyzing the fatigue S-N test data of exhaust components. The determination of minimum sample size is also discussed with a worked table and a graph.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Journal Article

Durability/Reliability Analysis, Simulation, and Testing of a Thermal Regeneration Unit for Exhaust Emission Control Systems

2012-09-24
2012-01-1951
Durability and reliability performance is one of the most important concerns of a recently developed Thermal Regeneration Unit for Exhaust (T.R.U.E-Clean®) for exhaust emission control. Like other ground vehicle systems, the T.R.U.E-Clean® system experiences cyclic loadings due to road vibrations leading to fatigue failure over time. Creep and oxidation cause damage at high temperature conditions which further shortens the life of the system and makes fatigue life assessment even more complex. Great efforts have been made to develop the ability to accurately and quickly assess the durability/reliability of the system in the early development stage. However, reliable and validated simplified engineering methods with rigorous mathematical and physical bases are still urgently needed to accurately manage the margin of safety and decrease the cost, whereas iterative testing is expensive and time consuming.
Journal Article

Fatigue Life Assessment of Welded Structures with the Linear Traction Stress Analysis Approach

2012-04-16
2012-01-0524
Structural stress methods are now widely used in fatigue life assessment of welded structures and structures with stress concentrations. The structural stress concept is based on the assumption of a global stress distribution at critical locations such as weld toes or weld throats, and there are several variants of structural stress approaches available. In this paper, the linear traction stress approach, a nodal force based structural stress approach, is reviewed first. The linear traction stress approach offers a robust procedure for extracting linear traction stress components by post-processing the finite element analysis results at any given hypothetical crack location of interest. Pertinent concepts such as mesh-insensitivity, master S-N curve, fatigue crack initiation and growth mechanisms are also discussed.
Journal Article

High-Temperature Life Assessment of Exhaust Components and the Procedure for Accelerated Durability and Reliability Testing

2012-09-24
2012-01-2058
Fatigue, creep, oxidation, or their combinations have long been recognized as the principal failure mechanisms in many high-temperature applications such as exhaust manifolds and thermal regeneration units used in commercial vehicle aftertreatment systems. Depending on the specific materials, loading, and temperature levels, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep-fatigue, fatigue-oxidation, creep-fatigue-oxidation. Several multiple failure mechanisms based material damage models have been developed, and products to resist these failure mechanisms have been designed and produced. However, one of the key challenges posed to design engineers is to find a way to accelerate the durability and reliability tests of auto exhaust in component and system levels and to validate the product design within development cycle to satisfy customer and market's requirements.
Technical Paper

Modeling and Simulation of Creep-Fatigue-Oxidation Crack Growth

2013-04-08
2013-01-0167
Creep, fatigue, oxidation, or their combinations are usually the fundamental underlying material degradation and failure mechanisms in advanced engines, manifolds, thermal regeneration systems, and other systems. Therefore, the basic understanding and appropriate mathematical modeling of these mechanisms are crucial in engineering designs. Several numerical simulation strategies are being pursued to achieve a long-term goal of virtual simulation of high-temperature degradation and failure of such components and systems. In this paper, as the first step of the effort in virtual high-temperature material failure simulation, the numerical simulation of the recently developed crack growth models, i.e. creep-fatigue, fatigue-oxidation, and creep-fatigue-oxidation models, are conducted. It is demonstrated that the models developed can be implemented in an efficient way for virtual life assessment and engineering design applications.
Technical Paper

Probabilistic Thermal-Fatigue Life Assessment for Vehicle Exhaust Components and Systems

2014-09-30
2014-01-2305
Thermo-mechanical fatigue (TMF) resistance characterization and life assessment are extremely important in the durability/reliability design and validation of vehicle exhaust components/systems, which are subjected to combined thermal and mechanical loadings during operation. The current thermal-fatigue related design and validation for exhaust products are essentially based on testing and the interpretation of test results. However, thermal-fatigue testing are costly and time consuming, therefore, computer aided engineering (CAE) based virtual thermal-fatigue life assessment tools with predictive powers are strongly desired. Many thermal-fatigue methods have been developed and eventually implemented into the CAE tools; however, most of them are based on deterministic life assessment approach, which cannot provide satisfactory explanation for the observed uncertainties introduced in thermal-fatigue failure data.
Technical Paper

The Uncertainty of Estimated Lognormal and Weibull Parameters for Test Data with Small Sample Size

2013-04-08
2013-01-0945
In this paper, the uncertainty of the estimated parameters of lognormal and Weibull distributions for test data with small sample size is investigated. The confidence intervals of the estimated parameters are determined by solving available analytical equations, and the scatters of the estimated parameters with respect to the true values are estimated by using Monte Carlo simulation approaches. Important parameters such as mean, standard deviation, and design curve are considered. The emphasis is on the interpretation and the implication of the obtained shape parameter β of the Weibull distribution function and the design curve obtained from a lognormal distribution function. Finally, the possible impact of this study on the current engineering practice is discussed.
X