Refine Your Search

Search Results

Technical Paper

A Charge Sustaining Parallel HEV Application of the Transmotor

1999-03-01
1999-01-0919
An electromechanical gear is presented along with design examples utilizing the electromechanical gear in hybrid electric vehicle drive trains. The designs feature the electromechanical gear (the Transmotor) in place of traditional mechanical transmissions and/or gearing mechanisms. The transmotor is an electric motor suspended by its shafts, in which both the stator and the rotor are allowed to rotate freely. The motor thus can provide positive or negative rotational energy to its shafts by either consuming or generating electrical energy. A design example is included in which the transmotor is installed on the output shaft of an internal combustion engine. In this arrangement the transmotor can either increase or decrease shaft speed by applying or generating electrical power, allowing the ICE to operate with a constant speed.
Technical Paper

A Highly Stable Two-Phase Thermal Management System for Aircraft

2012-10-22
2012-01-2186
Future electronics and photonics systems, weapons systems, and environmental control systems in aircraft will require advanced thermal management technology to control the temperature of critical components. Two-phase Thermal Management Systems (TMS) are attractive because they are compact, lightweight, and efficient. However, maintaining stable and reliable cooling in a two-phase flow system presents unique design challenges, particularly for systems with parallel evaporators during thermal transients. Furthermore, preventing ingress of liquid into a vapor compressor during variable-gravity operation is critical for long-term reliability and life. To enable stable and reliable cooling, a highly stable two-phase system is being developed that can effectively suppress flow instability in a system with parallel evaporators. Flow stability is achieved by ensuring that only single-phase liquid enters the evaporators.
Technical Paper

A Pin-on-Disc Study on the Electrified Sliding Wear of EVs Powertrain Gears

2022-03-29
2022-01-0320
In contrast to conventional powertrains from internal combustion engine vehicles (ICEV), the tribological performance of powertrains of electric vehicles (EVs) must be further evaluated by considering new critical operating conditions such as electrical environments. The operation of any type of electric motor produces shaft voltages and currents due to various hardware configurations and factors. Furthermore, the common application of inverters intensifies this problem. It has been reported that the induced shaft voltages and currents can cause premature failure problems in tribological components such as bearings and gears due to accelerated wear and/or fatigue. It is ascribed to effects of electric discharge machining (EDM), also named, sparking wear caused by shaft currents and poor or increasingly diminishing dielectric strength of lubricants. A great effort has been done to study this problem in bearings, but it has not yet been the case for gears.
Technical Paper

A Study of Design Issues on Electrically Peaking Hybrid Electric Vehicle for Diverse Urban Driving Patterns

1999-03-01
1999-01-1151
A vehicle's performance depends greatly on the operating conditions, such as journey type, driving behavior etc. Driving patterns vary with geographical location and traffic conditions. In today's global economy where automobile industries are concerned with both local and international markets, it becomes necessary to investigate vehicle performance for driving cycles of different countries and develop vehicle designs which are appropriate to the consumer's market. This paper concentrates on the issues related to designing hybrid electric vehicles. A method of optimizing the size of the principal hardware components of hybrid vehicles such as, electric motors, internal combustion engines, transmissions and energy storage devices based on the demands of different drive cycles is discussed in the paper.
Technical Paper

Effect of Motor Short Circuit on EV and HEV Traction Systems

2000-08-21
2000-01-3063
Short circuit incidents on traction motors can cause ‘wheel-locking’ on the vehicle, and may have an adverse impact on vehicle stability. This paper investigates the necessity of fault-tolerant motors for EV and HEV traction applications. Reaction of resulting fault torques differ along with electric motor types and fault variety. The paper analyzes the short-circuit behavior of three basic motor types: permanent magnet, induction and switched reluctance motor. The analysis is based on the transient simulation of the three most common inverter short-circuit cases and their effect on vehicle stability.
Technical Paper

Investigation of Proper Motor Drive Characteristics for Military Vehicle Propulsion

2003-06-23
2003-01-2296
Due to their harsh operating environments, military vehicle drive trains have special requirements. These special requirements are usually represented by hill climbing ability, obstacle negotiation, battlefield cross country travel, hard acceleration, high speed, etc. These special requirements need the vehicle drive train to have a wider torque and speed range characteristics than commercial vehicles. We have proved that larger constant power ratio in electric motor can significantly enhance the vehicle acceleration performance. In other words, for the same acceleration performance, large constant power ratio can minimize the power rating of the traction motor drive, thus minimizing the power rating of the power source (batteries for instance). Actually, extension of the constant power range can also significantly enhance the gradeability, which is crucial for military vehicles.
X