Refine Your Search

Topic

Author

Search Results

Technical Paper

3D Re-Engineering: A Comprehensive Process for Solving Production Assembly Fit Problems

1998-06-02
981835
Dimensional Management (DM) is a methodology to predict and control the impact of variation on assembly from, fit, and function. Application of Dimensional Management tools and other modeling and simulation techniques are combined in a process called 3D Re-Engineering for application to existing production designs. Analytical techniques for predicting the impact of variation on assembly fit, and corresponding methods for controlling variation are presented, as used in a production environment for root cause corrective action on existing assembly fit problems. Assembly variation analysis is typically performed early in the product development phases, by coordinating datums, assembly sequences, assembly methods, and detail part tolerances across the product development team.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

Adsorption and Desorption Effects on Carbon Brake Material Friction and Wear Characteristics

2005-10-03
2005-01-3436
The characteristics of the friction materials used in aircraft brakes are extremely important to the performance and safe operation of transport airplanes. These characteristics can change during exposure to environmental effects in the duty cycle, which can lead to problems, such as abnormally low friction, or brake induced vibration. Water vapor in the atmosphere produces a direct lubricant effect on carbon. Observed transition temperatures within the range of 140°C to 200°C, associated with increases in friction and wear of carbon brake materials, are attributed to water vapor desorption. Friction and wear transitions in the range of 500°C to 900°C may be associated with oxygen desorption.
Technical Paper

An Integrated Human Modeling Simulation Process for the International Space Station, Intra-Vehicular Activity

2001-09-11
2001-01-3035
Defining a process for integrating human modeling within the design and verification activities of the International Space Station (ISS) has proven to be as important as the simulations themselves. The process developed (1) ensured configuration management of the required digital mockups, (2) provided consistent methodology for simulating and analyzing human tasks and hardware layout, (3) facilitated an efficient method of communicating design requirements and relaying satisfaction of contract requirements, and (4) provided substantial cost savings by reducing the amount of late redesign and expensive mockup tests. Human simulation is frequently the last step in the design process. Consequently, the influence it has on product design is minimal and oftentimes being used as a post-design verification tool.
Journal Article

Application of Metrology, Statistics, Root Cause Analysis, and Cost of Quality to Enable Quality Improvements and Implementation of Statistical Process Controls for Acceptance of Large Complex Assemblies

2021-03-02
2021-01-0025
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges.
Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Considerations for Requirements and Specifications of a Digital Thread in Aircraft Data Life Cycle Management

2024-03-05
2024-01-1946
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle.
Technical Paper

Designing Airplane Cabin Noise Treatment Packages using Statistical Energy Analysis

2007-05-15
2007-01-2316
Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
Technical Paper

Development and Deployment of Orbital Drilling at Boeing

2006-09-12
2006-01-3152
Orbital hole drilling technology has shown a great deal of promise for cost savings on applications in the aerospace industry where burr free, high quality holes are a necessity. This presentation will show some of the basic research on orbital drilling development Boeing is doing with the Advanced Manufacturing Research Center at Sheffield University and the deployment of the technology into production programs within The Boeing Company.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Technical Paper

Development of Metal-Matrix Nano-Composite Materials for Advanced Aerospace Fastener Technology

2006-09-12
2006-01-3154
This paper presents the results of development efforts relating to an advanced material processing technique, namely cryogenic milling, and its application to the processing of Al-7.5wt%Mg-0.2wt%N-20vol%SiC and Al 8wt%Ti-2wt%Ni nano-composite materials suitable for use in aerospace fastener applications. The effects of cryogenic milling in the material production are investigated via microstructural analysis. The advantages of cryogenic milling in the material production are presented with powder morphology and handling characteristics, and microstructural and nanostructural aspects. The resulting, very homogeneous material is discussed along with resulting mechanical properties, which are obtained through tension tests.
Technical Paper

Development of Portable and Flexible Track Positioning System for Aircraft Manufacturing Processes

2007-09-17
2007-01-3781
The Boeing Company has recently developed a portable positioning system based upon its patented flexible vacuum track technology, in support of its commitment to lean manufacturing techniques. The positioning system, referred to as Mini Flex Track, was initially developed as an inexpensive drilling system that minimizes machine setup time, does not require extensive operator training due to its simple user interface, is general purpose enough to be used in varying airplane applications, and meets strict accuracy requirements for aircraft manufacturing. The system consists of a variable length vacuum track that conforms to a range of contours, a two-axis numerically-controlled positioning carriage that controls machine motion, an additional rail perpendicular to the vacuum rail that provides transverse motion, and an end effector that can perform various tasks.
Technical Paper

Dynamic Circuit Analysis and Testing for International Space Station Science Experiments

2008-11-11
2008-01-2911
The International Space Station (ISS) Payload Engineering Integration (PEI) organization has developed the critical capabilities in dynamic circuit modeling and simulation to analyze electrical system anomalies during testing and operation. This presentation provides an example of the processes, tools and analytical techniques applied to the improvement of science experiments over-voltage clamp circuit design which is widely used by ISS science experiments. The voltage clamp circuit of Science Rack exhibits parasitic oscillations when a voltage spike couples to the Field-Effect Transistor (FET) in the clamp circuit. The oscillation can cause partial or full conduction of the shunt FET in the circuit and may result in the destruction of the FET. In addition, the voltage clamp circuit is not designed to detect the high current through the FET, and this condition can result in damage to surrounding devices. These abnormal operations were analyzed by dynamic circuit simulation and tests.
Technical Paper

ESM Analysis of COTS Laundry Systems for Space Missions

2002-07-15
2002-01-2518
Clothing supply has been examined for historical, current, and planned missions. For STS, crew clothing is stowed on the orbiter and returned to JSC for refurbishment. On Mir, clothing was supplied and then disposed of on Progress for incineration on re-entry. For ISS, the Russian laundry and 75% of the US laundry is placed on Progress for destructive re-entry. The rest of the US laundry is stowed in mesh bags and returned to earth in the Multi Purpose Logistics Module (MPLM) or in the STS middeck. For previous missions, clothing was supplied and thrown away. Supplying clothing without washing dirty clothing will be costly for long-duration missions. An on-board laundry system may reduce overall mission costs, as shown in previous, less accurate, metric studies. Some design and development of flight hardware laundry systems has been completed, such as the SBIR Phase I and Phase II study performed by UMPQUA Research Company for JSC in 1993.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

Electromagnetic Forming of Various Aircraft Components

2005-10-03
2005-01-3307
Electromagnetic forming (EMF) technology has been used lately for the joining and assembly of axisymmetric parts in the aerospace and automotive industries. A few case studies of compressive-type joining processes applied on both aluminum and titanium or stainless tubes for aerospace applications are presented. In the first case study, tests were conducted using 2024-T3 drawn tubes joined with a steel end fitting to form a torque tube using different forming variables including: the fitting geometry, material formability and forming power (KJ). The power setting and the fitting geometry were optimized to improve the fatigue life, torque off, and the axial load capability of the torque tube joints to drive the leading and trailing edge high-lift devices.
Journal Article

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2011-10-18
2011-01-2576
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a “single-truth” architectural framework. The SAVI approach of “Integrate, then Build” provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a “single-truth” reference architectural model.
Technical Paper

Fire Resistant Composites

2002-11-05
2002-01-2957
Use of graphite/resin composites in engine nacelles has been restricted because the resin is flammable. Fiberglass/polyimide and graphite/polyimide laminates were treated with various phosphorylated polymers to obtain enhanced fire-resistance and high-char-yield products after exposure to a 2000°F flame for 15 minutes. Tensile, flexural shear, and interlaminar shear strengths were determined. Polymeric phosphorylated hydrazides were found to give the best fire-resistance.
Technical Paper

Flexible Assembly System Implementation

1999-10-06
1999-01-3447
This paper covers issues related to the installation, testing, and production implementation of a large-scale automated wing drilling/fastener installation system. Emphasis is placed on describing the production process, foundation requirements, axes alignment, calibration, testing and implementation. Description will include key hardware features such as the multi-function end effector and spindle end effector. The objective is to convey the complexity of implementing this system as well as reviewing the lessons learned from this experience.
X