Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Analysis and Development of A Real-Time Control Methodology in Resistance Spot Welding

1991-02-01
910191
The single-parameter, in-process monitor and automatic control systems for the resistance spot welding process have been studied by many investigators. Some of these have already been commercialized and used by sheet metal fabricators. These control systems operate primarily on one of the three process parameters: maximum voltage or voltage drop, dynamic resistance, or thermal expansion between electrodes during nugget formation. Control systems based on voltage or dynamic resistance have been successfully implemented for industrial applications. A great amount of experience on these two control methods has been accumulated through trial-and-error approaches. The expansion-based control system is not commonly utilized due to lack of experience and understanding of the process. Since the expansion displacement between electrodes during welding responds directly to the weld nugget formation, this control parameter provides a better means to produce more precise spot welds.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Drag Evaluation of the Bellanca Skyrocket II

1977-02-01
770472
The Bellanca Skyrocket II, possessor of five world speed records, is a single engine aircraft with high performance that has been attributed to a laminar flow airfoil and an all composite structure. Utilization of composite materials in the Skyrocket II is unique since this selection was made to increase the aerodynamic efficiency of the aircraft. Flight tests are in progress to measure the overall aircraft drag and the wing section drag for comparison with the predicted performance of the Skyrocket. Initial results show the zero lift drag is indeed low, with CDO = 0.016.
Technical Paper

Energy-Optimal Allocation of a Heterogeneous Delivery Fleet in a Dynamic Network of Distribution and Fulfillment Centers

2024-04-09
2024-01-2448
This paper presents an energy-optimal plan for the allocation of a heterogeneous fleet of delivery vehicles in a dynamic network of multiple distribution centers and fulfillment centers. Each distribution center with a heterogeneous fleet of delivery vehicles is considered as a hub connected with the fulfillment centers through the routes as spokes. The goal is to minimize the overall energy consumption of the fleet while meeting the demand of each of the fulfillment centers. To achieve this goal, the problem is divided into two sub-problems that are solved in a hierarchical way. Firstly, for each spoke, the optimal number of vehicles to be allocated from each hub is determined. Secondly, given the number of allocated delivery vehicles from a hub for each spoke, the optimal selection of vehicle type from the available heterogeneous fleet at the hub is done for each of spokes based on the energy requirement and the energy efficiency of the spoke under consideration.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

IN-FLIGHT MEASUREMENTS OF THE GA(W)-2 AERODYNAMIC CHARACTERISTICS

1977-02-01
770461
Flight tests of a new 13% General Aviation Airfoil - the GA(W)-2 - gloved full span onto the existing wing of a Beech Sundowner have generated chordwise pressure distributions and wake surveys. Section lift, drag and moment coefficients derived from these measurements verify wind tunnel data and theory predicting the performance of this airfoil. The effect of steps, rivets and surface coatings upon the drag of the GA(W)-2 was also evaluated.
Technical Paper

Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure

2005-07-11
2005-01-2926
Long-duration space missions require high-quality, nutritious foods, which will need reheating to serving temperature, or sterilization on an evolved planetary base. The package is generally considered to pose a disposal problem after use. We are in the process of development of a dual-use package wherein the food may be rapidly reheated in situ using the technology of ohmic heating. We plan to make the container reusable, so that after food consumption, the package is reused to contain and sterilize waste. This approach will reduce Equivalent System Mass (ESM) by using a compact heating technology, and reducing mass requirements for waste storage. Preliminary tests of the package within a specially-designed ohmic heating enclosure show that ISS menu item could easily be heated using ohmic heating technology. Mathematical models for heat transfer were used to optimize the layout of electrodes to ensure uniform heating of the material within the package.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Ford DrivAer Test Case Summary

2022-03-29
2022-01-0886
The 2nd Automotive CFD Prediction workshop (AutoCFD2) was organized to improve the state-of-the-art in automotive aerodynamic prediction. It is the mission of the workshop organizing committee to drive the development and validation of enhanced CFD methods by establishing publicly available standard test cases for which high quality on- and off-body wind tunnel test data is available. This paper reports on the AutoCFD2 workshop for the Ford DrivAer test case. Since its introduction, the DrivAer quickly became the quasi-standard for CFD method development and correlation. The Ford DrivAer has been chosen due to the proven, high-quality experimental data available, which includes integral aerodynamic forces, 209 surface pressures, 11 velocity profiles and 4 flow field planes. For the workshop, the notchback version of the DrivAer in a closed cooling, static floor test condition has been selected.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

2008-04-14
2008-01-1137
Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
X