Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Crankangle Based Torque Estimation: Mechanistic / Stochastic

2000-03-06
2000-01-0559
Actual stringent regulations on emission level imply highly efficient control strategies, which can be based on the instantaneous engine torque or the in-cylinder pressure. To reach this objective, while avoiding costly direct measurements, the estimation of one of these variables is required. In this paper, two methods are presented based on the correlation between the crankshaft velocity and the indicated torque or pressure. In the “mechanistic method”, the model based on the dynamics of the reciprocating engine and on a correlation with the combustion process provides a relationship between the fluctuating component of the instantaneous crankshaft acceleration and the average indicated torque of the firing cylinders. Thus, an indicated torque signature of each cylinder can be estimated from the observation of the crankshaft acceleration.
X