Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Calibration of Torque Structure and Charge Control System for SI Engines Based on Physical Simulation Models

2006-04-03
2006-01-0854
A physics-based simulation program developed by IAV is used to calibrate the torque structure and cylinder charge calculation in the electronic control unit of SI engines. The model calculates both the charge cycle and combustion phase based on flow mechanics and a fractal combustion model. Once the air mass in the charge cycle has been computed, a fractal combustion model is used for the ongoing calculation of cylinder pressure and temperature. The progression of cylinder pressure over the high and low-pressure phases also provides information on engine torque. Following the engine-specific calibration of the model using elemental geometric information and reduced test bench measurements, the physical engine properties can be simulated over the operating cycle. The calibrated model allows simulations to be carried out at all operating points and the results to be treated as virtual test bench measurements.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Modeling and Identification of a Gasoline Common Rail Injection System

2014-04-01
2014-01-0196
The precision of direct fuel injection systems of combustion engines is crucial for the further reduction of emissions and fuel consumption. It is influenced by the dynamic behavior of the fuel system, in particular the injection valves and the common rail pressure. As model based control strategies for the fuel system could substantially improve the dynamic behavior, an accurate model of the common rail injection system for gasoline engines - consisting of the main components high-pressure pump, common rail and injection valves - that could be used for control design is highly desirable. Approaches for developing such a model are presented in this paper. For each key component, two models are derived, which differ in temporal resolution and number of degrees of freedom. Experimental data is used to validate and compare the models. The data was generated on a test bench specifically designed and built for this purpose.
X