Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Technical Paper

Simplified MADYMO Model of the IHRA Head-form Impactor

2006-07-04
2006-01-2349
Interest in pedestrian head injury has prompted a need to measure the potential of head injury resulting from vehicular impacts. A variety of head impactors have been developed to fulfill this measurement need. A protocol has been developed by the International Harmonization Research Activity (IHRA) to use head impactor measurements to predict head injury. However, the effect of certain characteristics of the various head impactors on the measurement procedure is not well understood. This includes the location of the accelerometers within the head-form and testing the head-form under the variety of conditions necessary to establish its global performance. To address this problem, a simple model of the IHRA head-form has been developed. This model was created using MADYMO© and consists of a solid sphere with a second sphere representing the vinyl covering. Stiffness and damping characteristics of the vinyl covering were determined analytically from drop test data of an IHRA head-form.
X