Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Electro-Mechanical Infinitely Variable Speed Transmission

2004-03-08
2004-01-0354
An electro-mechanical infinitely variable transmission (eVT), comprising a pair of planetary trains interconnected with two electric machines and clutches, has been proposed. The transmission leverages the advantages of an output power-split configuration for low-speed operation and a compound power-split configuration for high-speed operation. It is capable of being operated in a number of operating modes including an eVT only mode and a hybrid mode when equipped with on-board energy storage devices. The transmission provides a compact, highly efficient and potentially low cost driveline solution for both conventional vehicles and hybrid electric vehicles. A virtual transmission prototype was built in EASY51. A base vehicle model was also constructed in EASY5 environment with Ricardo Powertrain Library components.
Technical Paper

An Electro-Mechanical Infinitely Variable Transmission for Hybrid Electric Vehicles

2005-04-11
2005-01-0281
An electro-mechanical variable speed transmission (eVT) is proposed for hybrid electric vehicles. The transmission is comprised of a pair of planetary gear trains interconnected with two electric machines and clutches. With on-board energy storage devices, the transmission combines, in a compact unit, independent speed-ratio control and power regulation between the engine and drive wheels. It offers a highly integrated, efficient and low cost solution to hybrid electric vehicles. Operating principles of the transmission were outlined. Virtual transmission and vehicle prototypes were built with EASY5. Simulations were conducted to evaluate its performance in context of a hybrid electric vehicle. Comparisons were made against non-hybrid vehicles equipped respectively with eVT and four-speed automatic transmission, and against the production hybrid vehicle Prius. Results showed superior performance of the proposed eVT in hybrid vehicle.
Technical Paper

Assessing and Predicting the Performance of Bearings in Debris Contaminated Lubrication Environment

1999-09-13
1999-01-2791
Many lubrication environments in various equipment applications are inherently contaminated with debris and require mechanical components that are, as much as possible, resistant to the potential detrimental effects of debris particles. Many design engineers and lubricant specialists often overlook potential relationships between the various component failure modes, lubricant debris contamination level and the engineering solutions that are created to overcome them. Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Some of these methods have become standard methods within each bearing manufacturer's organization. Using an experimental method, performance evaluation results of tapered roller bearings in the areas of material fatigue will be discussed. The potential performance advantages will be placed in context of understanding the performance needs in the application.
X