Refine Your Search

Topic

Search Results

Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

A Method for Improving the Accuracy of Standard Stereo Photogrammetry When Using Small Subtended Angles

2005-04-11
2005-01-0751
In stereo photogrammetry, the accuracy of calculating the location of a point in space, decreases as the angle between the two cameras decreases. For vehicle crash testing, the need for accurate 3D data conflicts with the need for flexible positioning of the cameras, to enable unobstructed views of the targets inside the vehicle throughout the impact event. This paper discusses a method for increasing the quantity and quality of film analysis data when small subtended angles are used. The method uses the 3D information developed through triangulation of two cameras as input to a single camera analysis.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

An Electro-Mechanical Infinitely Variable Speed Transmission

2004-03-08
2004-01-0354
An electro-mechanical infinitely variable transmission (eVT), comprising a pair of planetary trains interconnected with two electric machines and clutches, has been proposed. The transmission leverages the advantages of an output power-split configuration for low-speed operation and a compound power-split configuration for high-speed operation. It is capable of being operated in a number of operating modes including an eVT only mode and a hybrid mode when equipped with on-board energy storage devices. The transmission provides a compact, highly efficient and potentially low cost driveline solution for both conventional vehicles and hybrid electric vehicles. A virtual transmission prototype was built in EASY51. A base vehicle model was also constructed in EASY5 environment with Ricardo Powertrain Library components.
Technical Paper

An Electro-Mechanical Infinitely Variable Transmission for Hybrid Electric Vehicles

2005-04-11
2005-01-0281
An electro-mechanical variable speed transmission (eVT) is proposed for hybrid electric vehicles. The transmission is comprised of a pair of planetary gear trains interconnected with two electric machines and clutches. With on-board energy storage devices, the transmission combines, in a compact unit, independent speed-ratio control and power regulation between the engine and drive wheels. It offers a highly integrated, efficient and low cost solution to hybrid electric vehicles. Operating principles of the transmission were outlined. Virtual transmission and vehicle prototypes were built with EASY5. Simulations were conducted to evaluate its performance in context of a hybrid electric vehicle. Comparisons were made against non-hybrid vehicles equipped respectively with eVT and four-speed automatic transmission, and against the production hybrid vehicle Prius. Results showed superior performance of the proposed eVT in hybrid vehicle.
Technical Paper

Application of Multi-Parameter and Boundary Mannequin Techniques in Automotive Assembly Process

2003-06-17
2003-01-2198
This paper deals with the multi-parameter and boundary mannequin techniques in creating human models in automotive applications. The concepts and applications of single-parameter, multiple parameter and boundary mannequin method are discussed respectively to clarify certain confusion. Emphasis is put on how to create boundary mannequins for a specific application, which may have been puzzling many engineers in practical applications. The authors would like to share their experience in using the digital human modeling software and make discussions on some common issues. A number of case studies from typical automotive manufacturing assembly operations are also presented to demonstrate the usage of the multi-parameter and boundary mannequin techniques.
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Dynamic Modeling of Forces on Snowplow Equipped Trucks

1997-11-17
973193
A major task of road and airfield maintenance for transportation departments in the Northern United States and in cold regions globally is snow removal. In addition, there is a service industry built on snowplow equipped light trucks to remove snow from vehicle serviceways and parking lots. Thus, a source of stresses on a truck frame are the forces applied by the plow. Unfortunately, very little research has been performed to provide design models that will predict these forces. In this paper, both theoretical and experimental work on developing expressions for snowplow forces will be discussed.
Technical Paper

Experimental and Simulation Analysis of PFI-SI Engine for Fuel Economy Improvement

2005-10-24
2005-01-3691
Variable Valve Timing (VVT) strategy on both intake and exhaust valves has a pivotal influence on the specific fuel consumptions and engine performance. In addition to this, fuel economy can also be enhanced by the application of Variable Compression Ratio (VCR) strategy. This paper presents three possible strategies to enhance fuel economy improvement: A possible VVT strategy Early Intake Valve Opening (EIVO) and Late Exhaust Valve Closure (LEVC) that alters the valve overlap to reduce fuel consumption A two-position VCR system that improves fuel conversion factor to realize fuel economy A strategy that combines above two technologies to produce a complementary effect on fuel economy All three strategies have been tested on a 1.8L DOHC four cylinder PFI engine. AVL BOOST a 1D engine gas exchange and cycle simulation code was used to model this engine to get fuel economy gains at part-load points.
Technical Paper

Front Impact Pulse Severity Assessment Methodology

2005-04-11
2005-01-1416
The pulse severities from various vehicle impact tests need to be assessed during the impact structure development and targeting stage to assure that the occupants can meet the injury criteria as required. The conventional method using TTZV (time to zero velocity), TDC (total dynamic crush), and G1/G2 (two stage averaged pulse) is often unable to give a quick and clear answer to the question being raised. A simple numerical tool is developed here to assess the pulse severity with a single parameter in which the severity is expressed as the amount of chest travel under a certain target restraint curve or chest A-D curve. The tool is applied to several front impact vehicle pulses to show the effectiveness. The new method developed here can be used to assess the pulse severity in an easy and objective way along with conventional parameters.
Journal Article

Fuel Efficiency Improvements in Heavy Truck Wheel Systems through Advanced Bearing Design and Technology

2014-09-30
2014-01-2330
The base design of commercial vehicle wheel end systems has changed very little over the past 50 years. Current bearings for R-drive and trailer wheel end systems were designed between the 1920's and the 1960's and designs have essentially remained the same. Over the same period of time, considerable gains have been made in bearing design, manufacturing capabilities and materials science. These gains allow for the opportunity to significantly increase bearing load capacity and improve efficiency. Government emissions regulations and the need for fuel efficiency improvements in truck fleets are driving the opportunity for redesigned wheel end systems. The EPA and NHTSA standard requires up to 23% reduction in emissions and fuel consumption by 2017 relative to the 2010 baseline for heavy-duty tractor combinations.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
Technical Paper

Low Temperature Impact Testing of Plastic Materials

2005-04-11
2005-01-1412
This study will analyze existing procedures and commercially available testing equipment for low temperature impact testing of plastic materials. The results of this analysis will be used to identify continuous improvement opportunities and develop recommended practices for low temperature impact testing to support ongoing efforts to meet related durability and performance needs of automotive components.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
Technical Paper

Prevention of Snow Accretion on Camera Lenses of Autonomous Vehicles

2020-04-14
2020-01-0105
With the rapid development of artificial intelligence, the autonomous vehicles (AV) have attracted considerable attention in the automotive industry. However, different factors negatively impact the adoption of the AVs, delaying their successful commercialization. Accretion of atmospheric icing, especially wet snow, on AV sensors causes blockage on their lenses, making them prone to lose their sight, in turn, increasing potential chances of accidents. In this study, two different designs are proposed in order to prevent snow accretion on the lenses of AVs via air flow across the lens surface. In both designs, lenses made of plain glass and superhydrophobic coated glass surfaces are tested. While some researchers have shown promise of water repellency on superhydrophobic surfaces, more snow accretion is observed on the superhydrophobic surfaces, when compared to the plain glass lenses.
X