Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Predictive Model for Knock in Dual Fuel Engines

1992-08-01
921550
A model is described for the prediction of the onset of autoignition and knock in compression ignition engines of the dual fuel type. The associated variations with time of performance parameters such as the energy release rate, cylinder pressure and charge temperature, power output and species concentrations can also be obtained. This is achieved through modelling in detail the chemical reaction rates of the gaseous fuel during compression and subsequently during diesel fuel pilot ignition and combustion. A comprehensive reaction scheme involving 105 reaction steps with 31 chemical species is employed for the purpose. The results are based mainly on methane or propane as the gaseous fuel while accounting for the contribution of pilot diesel fuel injection. Calculated data showed good general agreement with the corresponding experimental values.
Technical Paper

A Predictive Model for Knock in Spark Ignition Engines

1992-10-01
922366
The present contribution combines the consideration of the chemical reaction activity of the end gas and engine operating conditions to predict the onset of knock and associated performance in a spark ignition engine fuelled with methane. A two-zone predictive combustion model was developed based on an estimate of the effective duration of the combustion period and the mass burning rate for any set of operating conditions. The unburned end gas preignition chemical reaction activity is described by a detailed chemical reaction kinetic scheme for methane and air. The variation with time of the value of a formulated dimensionless knock parameter based on the value of the cumulative energy released due to preignition reaction activity of the end gas per unit volume relative to the total energy release per unit cylinder swept volume is calculated It is shown that whenever knocking is encountered, the value of builds up to a sufficiently high value that exceeds a critical value.
Technical Paper

A Predictive Model for the Combustion Process in Dual Fuel Engines

1995-10-01
952435
A multi-zone model has been developed for the prediction of the combustion processes in dual fuel engines and some of their performance features. The consequences of the interaction between the gaseous and the diesel fuels and the resulting modification to the combustion processes are considered. A reacting zone has been incorporated in the model to describe the partial oxidation of the gaseous fuel-air mixture while detailed kinetic schemes are employed to describe the oxidation of the gaseous fuel, right from the start of compression to the end of the expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. The model can predict the onset of knock as well as the operating features and emissions for the more demanding case of light load performance. Predicted values for methane operation show good agreement with corresponding experimental values.
Technical Paper

An Analytical Approach for the Optimization of a SI Engine Performance Including the Consideration of Knock

1998-05-04
981463
The present contribution describes an analytical approach for predicting the highest limit for acceptable power or efficiency for any spark ignition engine while ensuring knock free operation. A deterministic gradient based model combined with a simple genetic algorithm were used in association with a two-zone engine combustion model to predict analytically the necessary changes in specified operating parameters to produce optimum performance. Various examples involving mainly spark ignition engine operation with methane-hydrogen fuel mixtures are presented and discussed.
Technical Paper

An Investigation of the Effects of the Addition of Dissociated Water Products to a Gas Fueled Spark Ignition Engine

1999-10-25
1999-01-3516
One of the main features of methane fueled spark ignition engines is their relatively slow flame propagation rates in comparison to liquid fuel applications which may lead to relatively lower power output and efficiency with increased emissions and cyclic variations. This is especially pronounced at operational equivalence ratios that are much leaner than the stoichiometric value. The addition of some hydrogen and oxygen to the methane may contribute towards speeding the combustion process and bring about significant improvements in performance and emissions. It has been suggested that the addition to the methane of products of water electrolysis generated in situ on board of a vehicle may produce such improvements.
Technical Paper

Examination of Operational Limits in Gas Fueled Spark Ignition Engines

2000-06-19
2000-01-1944
There are distinct operational mixture limits beyond which satisfactory spark ignition engine performance can not be maintained. The values of these limit mixtures which depend on the mode of their determination, are affected by numerous operational and design factors that include the type of engine and fuel used. Simple approximate methods are presented for predicting these limits. Good agreement is shown to exist between the calculated and the corresponding experimental values over a range of operating conditions while operating on the gaseous fuels: methane, propane and hydrogen. The experimentally observed operational limits deviate very substantially from the corresponding accepted flammability limit values for quiescent conditions evaluated at the average temperature and pressure prevailing at the instant of the spark passage.
Technical Paper

Exhaust Emissions from Dual Fuel Engines at Light Load

1993-10-01
932822
Light load operation of dual fuel engines, associated with the use of very lean gaseous fuel-air mixtures produces relatively significant exhaust concentrations of unconverted methane and carbon monoxide, especially when small pilot liquid fuel injection is involved. The nature of the processes that bring about such exhaust emissions and measures for their control are discussed.
Technical Paper

Methane-Carbon Dioxide Mixtures as a Fuel

1992-08-01
921557
The presence of carbon dioxide with methane is often encountered to varying proportions in numerous natural, industrial and bio-gases. The paper discusses how such a presence modifies significantly the thermodynamic, kinetic and combustion characteristics of methane in air. Experimental results are presented showing how the performance of engines, both of the spark ignition and compression ignition dual fuel types is adversely affected by the increasing presence of carbon dioxide with the methane. The bases for these trends are discussed and some guidelines towards alleviating the adverse effects of the presence of carbon dioxide in such fuel mixtures are made.
X