Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Crank-Angle Resolved Imaging of Fuel Distribution, Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

2005-10-24
2005-01-3753
A combination of imaging techniques for investigations of highly transient processes and cyclic variations in internal combustion engines is presented. The single high-speed camera setup uses a CMOS camera combined with a two-stage image-intensifier and two excimer lasers. Fuel mixing, ignition and combustion were monitored via planar laser induced fluorescence imaging of toluene as a tracer that was added to iso-octane in combination with the simultaneous recording of light emission from the spark plasma and OH* chemiluminescence of the developing flame. Image frame rates of 12 kHz for hundreds of cycles were achieved. Application to misfire events in a spray-guided gasoline direct-injection engine is described to illustrate the merits of the technique.
Journal Article

Cycle-Resolved NO Measurements in a Spray-Guided SIDI Engine using Fast Exhaust Measurements and High-Speed OH* Chemiluminescence Imaging

2008-04-14
2008-01-1072
A potential correlation between OH* chemiluminescence and exhaust NO concentration is investigated to pursue a simple diagnostic technique for measurements of NO cycle-to-cycle fluctuations. Previous investigations of NO formation in a direct-injection gasoline engine have indicated that there may be a correlation between the concentration of NO and OH* chemiluminescence. Shortcomings of this work, namely phase-locked measurements, were overcome in the present study by using highspeed imaging capability to obtain chemiluminescence within the entire engine cycle and from entire engine cylinder volume. Cycle-resolved NO exhaust gas detection were performed synchronously with the chemiluminescence measurements on an optical spark-ignited engine with spray-guided direct-injection. A quartz cylinder liner, head and piston windows provide optical access for a highspeed CMOS camera and image intensifier to capture OH* images.
X