Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fatigue Crack Growth Model for Spot Welds in Square-Cup and Lap-Shear Specimens under Cyclic Loading Conditions

2007-04-16
2007-01-1373
A fatigue crack growth model is adopted in this paper to investigate the fatigue lives of resistance spot welds in square-cup and lap-shear specimens of dual phase, low carbon and high strength steels under cyclic loading conditions. The fatigue crack growth model is based on the global stress intensity factor solutions for main cracks, the local stress intensity factor solutions for kinked cracks as functions of the kink length, the experimentally determined kink angles, and the Paris law for kinked crack propagation. The predicted fatigue lives based on the fatigue crack growth model are then compared with the experimental data. The results indicate that the fatigue life predictions based on the fatigue crack growth model are in agreement with or lower than the experimental results.
Technical Paper

A General Failure Criterion for Spot Welds with Consideration of Plastic Anisotropy and Separation Speed

2003-03-03
2003-01-0611
A general failure criterion for spot welds is proposed with consideration of the plastic anisotropy and the separation speed for crash applications. A lower bound limit load analysis is conducted to account for the failure loads of spot welds under combinations of three forces and three moments. Based on the limit load solution and the experimental results, an engineering failure criterion is proposed with correction factors determined by different spot weld tests. The engineering failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of the plastic anisotropy, separation speed, sheet thickness, nugget radius and combinations of loads. Spot weld failure loads under uniaxial and biaxial opening loads and those under combined shear and twisting loads from experiments are shown to be characterized well by the engineering failure criterion.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

An Effective Fatigue Driving Stress for Failure Prediction of Spot Welds Under Cyclic Combined Loading Conditions

2003-03-03
2003-01-0696
An effective fatigue driving stress is proposed to predict the failure of spot welds under cyclic combined loading conditions. The effective fatigue driving stress is obtained based on the Mises yield criterion in terms of the resultant forces and moments in a plastic collapse analysis of spot welds under complex combined loading conditions as discussed in Lin et al. [1]. The effective fatigue driving stress can be used to correlate the fatigue data of spot welds with consideration of the effects of the sheet thickness, nugget diameter and loading conditions. Experimental results for coach-peel and lap-shear specimens under cyclic loading conditions are used to evaluate the applicability of the effective fatigue driving stress. The experimental results for spot welds in both coach-peel and lap-shear specimens are correlated very well based on the effective fatigue driving stress.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

2001-08-20
2001-01-2482
This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Automotive Air Conditioning Systems with Absorption Refrigeration

1971-02-01
710037
An automotive absorption air conditioning system would use engine-rejected heat as its energy source. Three possible cycles were studied, based on using water-lithium bromide, ammonia-water, and refrigerant 22-dimethyl ether of tetraethylene glycol as the refrigerant-absorbent pairs. Heat balances were calculated for the cycles and for a comparable vapor compression cycle. Energy input requirements, cooling capacities, coefficients of performance, and pressures and temperatures at various points in the cycle are given. Energy input requirements are compared with test data on the heat rejection from a 390 cu in. displacement production engine.
Technical Paper

Characterization of Combustion and NO Formation in a Spray-Guided Gasoline Direct-Injection Engine using Chemiluminescence Imaging, NO-PLIF, and Fast NO Exhaust Gas Analysis

2005-05-11
2005-01-2089
The spatial and temporal formation of nitric oxide in an optical engine operated with iso-octane fuel under spray-guided direct-injection conditions was studied with a combination of laser-induced fluorescence imaging, UV-chemiluminescence, and cycle resolved NO exhaust gas analysis. NO formation during early and late (homogeneous vs. stratified) injection conditions were compared. Strong spatial preferences and cyclic variations in the NO formation were observed depending on engine operating conditions. While engine-out NO levels are substantially lower for stratified engine operation, cyclic variations of NO formation are substantially higher than for homogeneous, stoichiometric operation.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Crush Strength of Aluminum 5052-H38 Honeycomb Materials under Combined Compressive and Shear Loads

2003-03-03
2003-01-0331
The crush strength of aluminum 5052-H38 honeycomb materials under combined compressive and shear loads are investigated here. The experimental results indicate that both the peak and crush strengths under combined compressive and shear loads are lower than those under pure compressive loads. A yield function is suggested for honeycomb materials under the combined loads based on a phenomenological plasticity theory. The microscopic crush mechanism under the combined loads is also investigated. A microscopic crush model based on the experimental observations is developed. The crush model includes the assumptions of the asymmetric location of horizontal plastic hinge line and the ruptures of aluminum cell walls so that the kinematic requirement can be satisfied. In the calculation of the crush strength, two correction factors due to non-associated plastic flow and different rupture modes are considered.
Journal Article

Cycle-Resolved NO Measurements in a Spray-Guided SIDI Engine using Fast Exhaust Measurements and High-Speed OH* Chemiluminescence Imaging

2008-04-14
2008-01-1072
A potential correlation between OH* chemiluminescence and exhaust NO concentration is investigated to pursue a simple diagnostic technique for measurements of NO cycle-to-cycle fluctuations. Previous investigations of NO formation in a direct-injection gasoline engine have indicated that there may be a correlation between the concentration of NO and OH* chemiluminescence. Shortcomings of this work, namely phase-locked measurements, were overcome in the present study by using highspeed imaging capability to obtain chemiluminescence within the entire engine cycle and from entire engine cylinder volume. Cycle-resolved NO exhaust gas detection were performed synchronously with the chemiluminescence measurements on an optical spark-ignited engine with spray-guided direct-injection. A quartz cylinder liner, head and piston windows provide optical access for a highspeed CMOS camera and image intensifier to capture OH* images.
Technical Paper

Design and Development of a Turbocharged E85 Engine for Formula SAE Racing

2008-06-23
2008-01-1774
A summary of the design and development process for a Formula SAE engine is described. The focus is on three fundamental elements on which the entire engine package is based. The first is engine layout and displacement, second is the fuel type, and third is the air induction method. These decisions lead to a design around a 4-cylinder 600cc motorcycle engine, utilizing a turbocharger and ethanol E-85 fuel. Concerns and constraints involved with vehicle integration are also highlighted. The final design was then tested on an engine dynamometer, and finally in the 2007 M-Racing FSAE racecar.
Technical Paper

Development and Use of a Regenerative Braking Model for a Parallel Hybrid Electric Vehicle

2000-03-06
2000-01-0995
A regenerative braking model for a parallel Hybrid Electric Vehicle (HEV) is developed in this work. This model computes the line and pad pressures for the front and rear brakes, the amount of generator use depending on the state of deceleration (i.e. the brake pedal position), and includes a wheel lock-up avoidance algorithm. The regenerative braking model has been developed in the symbolic programming environment of MATLAB/SIMULINK/STATEFLOW for downloadability to an actual HEV's control system. The regenerative braking model has been incorporated in NREL's HEV system simulation called ADVISOR. Code modules that have been changed to implement the new regenerative model are described. Resulting outputs are compared to the baseline regenerative braking model in the parent code. The behavior of the HEV system (battery state of charge, overall fuel economy, and emissions characteristics) with the baseline and the proposed regenerative braking strategy are first compared.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

Efficient Engine Models Using Recursive Formulation of Multibody Dynamics

2001-04-30
2001-01-1594
Engine models with fully coupled dynamic effects of the engine components can be constructed through the use of commercial multibody dynamics codes, such as ADAMS and DADS. These commercial codes provide a modeling platform for very general mechanical systems and the time and effort required to learn how to use them may preclude their use for some engine designers. In this paper, we review an alternative and specialized modeling platform that functions as a template for engine design. Relative to commercial codes, this engine design template employs a recursive formulation of multibody dynamics, and thus it leads directly to the minimum number of equations of motion describing the dynamic response of the engine by a priori satisfaction of kinematic constraints. This is achieved by employing relative coordinates in lieu of the absolute coordinates adopted in commercial multibody dynamics codes. This engine modeling tool requires only minimal information for the input data.
Technical Paper

Factors Influencing Spark Behavior in a Spray-Guided Direct-Injected Engine

2006-10-16
2006-01-3376
The spark process has previously been shown to heavily influence ignition stability, particularly in direct-injected gasoline engines. Despite this influence, few studies have addressed spark behavior in direct-injected engines. This study examines the role of environmental factors on the behavior of the spark. Through measurement of the spark duration, by way of the ignition current trace, several observations are made on the influence of external factors on the behavior of the spark. Changing the level of nitrogen in the cylinder (to simulate EGR), the level of wetting and velocity imparted by the spray, the ignition dwell time and the orientation of the ground strap, observations are made as to which conditions are likely to produce unfavorable (shorter) spark durations. Through collection of a statistically significant number of sample spark lengths under each condition, histograms have been assembled and compared under each case.
Technical Paper

Failure Mechanisms of Sandwich Specimens With Epoxy Foam Cores Under Bending Conditions

2003-03-03
2003-01-0327
Sandwich specimens with DP590 steel face sheets and structural epoxy foam cores are investigated under three-point bending conditions. Experimental results indicate that the maximum loads correspond to extensive cracking in the foam cores. Finite element simulations of the bending tests are also performed to understand the failure mechanisms of the epoxy foams. In these simulations, the plastic behavior of the steel face sheets is modeled by the Mises yield criterion with consideration of plastic strain hardening. A pressure sensitive yield criterion is used to model the plastic behavior of the epoxy foam cores. The epoxy foams are idealized to follow an elastic perfectly plastic behavior. The simulation results indicate that the load-displacement responses of some sandwich specimens agree with the experimental results.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
X