Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Market-Weighted Description of Low-Beam Headlighting Patterns in the U.S.

1998-02-23
980317
This study was designed to provide photometric information about current U.S. low-beam headlamps. The sample included 35 low-beam headlamps manufactured for use on the 23 best-selling passenger cars, light trucks, and vans for model year 1997. These 23 vehicles represent 45% of all vehicles sold in the U.S. The lamps were purchased directly from vehicle dealerships, and photometered in 0.5° steps from 45° left to 45° right, and from 5° down to 7° up. The photometric information for each lamp was weighted by 1997 sales figures for the corresponding vehicle. The results are presented both in tabular form for the 25th-percentile, the median (50th-percentile), and the 75th-percentile luminous intensities, as well as in graphical form (for the median luminous intensities, and median illuminance values reaching the road surface). The information is presented in aggregate form, as well as broken down by vehicle type and light source.
Journal Article

A Miller Cycle Engine without Compromise - The Magma Concept

2017-03-28
2017-01-0642
The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

A Survey of Alcohol as a Motor Fuel

1964-01-01
640648
Alcohol has been promoted and used as a motor fuel for more than 50 years. However, United States ethyl alcohol production is small compared with gasoline production. High latent heat of vaporization of alcohol makes possible some increase of power over gasoline. The heating value of alcohol is low and energy content of alcohol blends is less than that of gasoline; fuel consumption of blends is therefore increased. The ability of ethanol to improve the octane number of gasoline has diminished as the octane number of gasoline has improved. There is no published evidence that alcohols can appreciably reduce air pollution problems.
Technical Paper

A Survey of Automotive Occupant Restraint Systems: Where We’ve Been, Where We Are and Our Current Problems

1969-02-01
690243
In recent years, automotive occupant restraint system development has gained impetus, stimulated, in part, by new federal standards. But in the resolution of the basic question of whether automobiles should be equipped with restraints, many new problems have arisen, including, ironically, some brought on by regulation. While there is little doubt that restraint systems can provide the single most important contribution to occupant protection, such restraint systems remain useless unless adequately installed and properly worn. Current problems involve not only what concepts provide most promise for future restraint systems, but diverse and often conflicting industry and governmental opinion about what are the best interests of the motoring public. Restraints are still not provided in buses, trucks, and utility vehicles. In addition, the problems of child and infant restraints and restraints for retrofit in older vehicles remain unresolved.
Technical Paper

Absorption and Fluorescence Data of Acetone, 3-Pentanone, Biacetyl, and Toluene at Engine-Specific Combinations of Temperature and Pressure

2005-05-11
2005-01-2090
Quantitative planar laser-induced fluorescence measurements of fuel/air mixing in engines are usually based on the use of fluorescence tracers. The strength of the signals often depends on temperature, pressure and mixture composition. This complicates a quantitative analysis. The use of a small-bore optical engine for fundamental studies of absorption and fluorescence properties of fluorescence tracers is described. The temperature, pressure and composition dependence of the spectra of toluene, acetone, 3-pentanone, and biacetyl are examined under motored conditions to extend the experimental data base for the development of comprehensive models that predict the strength of fluorescence signals for a given condition.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

An Analog Computer Method for Determining “g” Loads and Resulting Motions in Automobile and Truck Wheel-Frame Systems

1971-02-01
710165
A general analog computer procedure is presented for the dynamic analysis of a selected realistic model of an automobile or truck vehicle wheel-frame system. The elements of the model are assigned a set of values based on a preselected vehicle, and the model is then subjected to a number of inputs which correspond to test track road disturbances at various speeds. This procedure is successively applied to a number of typical vehicles. Time-varying values of wheel spindle and frame reaction “g” loads, acclerations, and displacements are recorded, and illustrative waveshapes are depicted. Tables indicating extreme values of these quantities are also included.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

An Investigation of Catalytic Converter Performances during Cold Starts

1999-10-25
1999-01-3473
Automotive exhaust emission regulations are becoming progressively stricter due to increasing awareness of the hazardous effects of exhaust emissions. The main challenge to meet the regulations is to reduce the emissions during cold starts, because catalytic converters are ineffective until they reach a light-off temperature. It has been found that 50% to 80% of the regulated hydrocarbon and carbon monoxide emissions are emitted from the automotive tailpipe during the cold starts. Therefore, understanding the catalytic converter characteristics during the cold starts is important for the improvement of the cold start performances This paper describes a mathematical model that simulates transient performances of catalytic converters. The model considers the effect of heat transfer and catalyst chemical reactions as exhaust gases flow through the catalyst. The heat transfer model includes the heat loss by conduction and convection.
Technical Paper

Analysis and Redesign of Battery Handling using Jack™ and HUMOSIM Motions

2004-06-15
2004-01-2145
The evaluation of maintenance tasks is increasingly important in the design and redesign of many industrial operations including vehicles. The weight of subsystems can be extreme and often tools are developed to abate the ergonomic risks commonly associated with such tasks, while others are unfortunately overlooked. We evaluated a member of the family of medium-sized tactical vehicles (FMTV) and chose the battery handling from a list of previously addressed concerns regarding the vehicle. Particularly in larger vehicles, similar to those analyzed in this paper, batteries may exceed 35 kg (77 lbs). The motions required to remove these batteries were simulated using motion prediction modules from the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. These motions were visualized in UGS PLM Solutions' Jack™ and analyzed with the embedded 3-D Static Strength Prediction program.
Technical Paper

Anatomy and Physiology of the Respiratory System

1971-02-01
710297
The anatomy of the human respiratory system is detailed. The function of the entire system is shown from inspiration to expiration. Equations are given to illustrate flow-pressure relationships in the airways. Specifics of gas transfer are shown. All these details of physiology and function are necessary for an understanding of the effects of air pollution upon the human respiratory system.
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

2001-08-20
2001-01-2482
This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Automobile Demand and the Policy Forecast

1983-02-01
830494
Mathematical models of the automotive system play a valuable role in forecasting and policy analysis, especially in the public sector. However, poor documentation, lack of adequate model evaluation and unfamiliarity with the data and structural limitations of models suggest the possibility of misuse in such policy applications as fuel economy standards and regulatory impact assessments. Findings are illustrated by analysis of two models: the Wharton EFA Automobile Demand Model and the Sweeney Passenger Car Gasoline Demand Model. In addition, 40 world sector models and studies representing more than 75 countries are summarized.
Technical Paper

Automotive Air Conditioning Systems with Absorption Refrigeration

1971-02-01
710037
An automotive absorption air conditioning system would use engine-rejected heat as its energy source. Three possible cycles were studied, based on using water-lithium bromide, ammonia-water, and refrigerant 22-dimethyl ether of tetraethylene glycol as the refrigerant-absorbent pairs. Heat balances were calculated for the cycles and for a comparable vapor compression cycle. Energy input requirements, cooling capacities, coefficients of performance, and pressures and temperatures at various points in the cycle are given. Energy input requirements are compared with test data on the heat rejection from a 390 cu in. displacement production engine.
Technical Paper

Basic Physiology of Carbon Monoxide

1971-02-01
710300
The physiology of carbon monoxide is discussed in the human respiratory system. The details of the relationship of carbon monoxide and hemoglobin are outlined, and the effects of specific concentrations of CO are shown. Acute and chronic exposures to CO create certain effects on the various bodily systems, and these are described in detail.
X