Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

A Comprehensive Experimental Study to Measure Laminar and Turbulent Burning Velocity of Haltermann Gasoline with Ternary Additives (O3, H2, and CO)

2021-04-06
2021-01-0473
In this work, the effects of ozone, hydrogen, carbon monoxide, and exhaust gas recirculation (EGR) addition to Haltermann gasoline combustion were investigated. For these additives, laminar and turbulent flame speeds were experimentally determined using spherically propagating premixed flames in a constant volume combustion vessel. Two initial mixture pressures of Po = 1 and 5 bar, two initial mixture temperatures of 358 and 373 K and a range of equivalence ratios (Ф) from 0.5 to 1 were investigated. The additives were added as single, binary and ternary mixtures to Haltermann gasoline over a wide range of concentrations. For the stoichiometric mixture, the addition of 10% H2, 5% CO and 1000 ppm O3 shows remarkable enhancement (80%) in SL0compared to neat Haltermann gasoline. In addition, for this same blend, increasing the mixture initial temperature and pressure results in a significant increase in SL0compared to the neat gasoline.
Journal Article

A Computational Investigation of PPCI-Diffusion Combustion Strategy at Full Load in a Light-Duty GCI Engine

2021-04-06
2021-01-0514
A two-stage PPCI-diffusion combustion process recently showed good potential to enable clean and fuel-efficient gasoline compression ignition (GCI) combustion at medium-to-high loads. By conducting closed-cycle 3-D CFD combustion analysis, a further step was undertaken in this work to evaluate and optimize the PPCI-diffusion combustion strategy at a full load operating point (2000rpm-23.5 bar IMEPcc) while keeping engine-out NOx below 1 g/kWh. The light-duty GCI engine used in this investigation featured a custom-designed piston bowl geometry at a 17.0 compression ratio (CR), a high pressure diesel fuel injection system, and advanced single-stage turbocharging. A split fuel injection strategy was used to enable the two-stage PPCI-diffusion combustion process. First, the injector spray pattern and swirl ratio effects were evaluated. In-cylinder air utilization and the PPCI-diffusion combustion process were notably influenced by the closed-cycle combustion system design.
Technical Paper

A Deterministic Multivariate Clustering Method for Drive Cycle Generation from In-Use Vehicle Data

2021-04-06
2021-01-0395
Accurately characterizing vehicle drive cycles plays a fundamental role in assessing the performance of new vehicle technologies. Repeatable, short duration representative drive cycles facilitate more informed decision making, resulting in improved test procedures and more successful vehicle designs. With continued growth in the deployment of onboard telematics systems employing global positioning systems (GPS), large scale, low cost collection of real-world vehicle drive cycle data has become a reality. As a result of these technological advances, researchers, designers, and engineers are no longer constrained by lack of operating data when developing and optimizing technology, but rather by resources available for testing and simulation. Experimental testing is expensive and time consuming, therefore the need exists for a fast and accurate means of generating representative cycles from large volumes of real-world driving data.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

ALnalyse of System Factors Affecting Performance in Lean NOx Catalysis. 2. The Deleterious Role of Parasitic Homogeneous Hydrocarbon Oxidation on the Performance of High Temperature Lean NOx Catalysts

1998-10-19
982604
Increasing interest in lean NOx catalysis at temperatures between about 300-550°C has led to development of catalytic materials with thermal durability considerably improved over academic benchmark catalysts such as Cu-ZSM-5. The breaching of thermal durability barriers brings new obstacles into focus. Practical implementation of high temperature HC-based lean NOx catalysis entails delivery of hydrocarbons to the catalyst inlet at high temperatures. We have found initially unexpected, but scientifically precedented, phenomena regarding gas-phase kinetic instability of hydrocarbons in diesel exhaust atmospheres above 300°C. Around 300°C, homogeneous hydrocarbon oxidation can begin to occur. Rates of oxidation decrease between about 350-450°C and then increase again at higher temperatures. Some apparent NOx disappearance that does not correspond to chemical reduction of NOx can also occur homogeneously throughout this temperature range.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System - NOX Adsorber Management

2004-03-08
2004-01-0585
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Air-System and Variable Valve Actuation Recipe for High Load Gasoline Compression Ignition Operation in a Heavy-Duty Diesel Engine

2021-04-06
2021-01-0516
Gasoline compression ignition (GCI) offers improved efficiency by harnessing gasoline’s low reactivity to induce an extended ignition delay that promotes partial premixing of air and fuel before combustion occurs. However, enabling GCI across the full engine operating load map poses several challenges. At high load, due to the elevated pressures and temperatures of the charge mixture, the ignition delay time shrinks, leading to diminished GCI efficiency benefits. At low load, insufficient temperatures and pressures can lead to combustion instability. Variable valve actuation offers a practical solution to these challenges by enabling effective compression ratio (ECR) control. In this paper, the effects of variable intake valve closings were investigated for high load operations in a prototype heavy-duty GCI engine, using a research octane number 93 gasoline fuel. The study focused on the 50% (B50) and the 75% (B75) load conditions at 1375 RPM.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Journal Article

An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities

2020-04-14
2020-01-0832
Spray modeling techniques have evolved from the classic DDM (Discrete Drops Method) approach, where the continuous liquid jet is discretized into “drops” or “parcels” till advanced spray models often based on Eulerian approaches. The former technique, although computationally efficient, is essentially inadequate in highly dense jets, as in the near nozzle region of compression ignition engines, while the latter could lead to extreme levels of computational effort when resolved interface capturing methods, such as VoF (Volume of Fluids) and LS (Level-Set) types, are used. However, in a typical engineering calculation, the mesh resolution is considerably coarser than in these high fidelity computations. If one presumes that these interfacial details are far smaller than the mesh size, smoothing features over at least one cell ultimately results in a diffuse-interface treatment in a Eulerian framework.
Technical Paper

An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine

2018-04-03
2018-01-0226
This research investigates the potential of gasoline compression ignition (GCI) to achieve low engine-out NOx emissions with high fuel efficiency in a heavy-duty diesel engine. The experimental work was conducted in a model year (MY) 2013 Cummins ISX15 heavy-duty diesel engine, covering a load range of 5 to 15 bar BMEP at 1375 rpm. The engine compression ratio (CR) was reduced from the production level of 18.9 to 15.7 without altering the combustion bowl design. In this work, four gasolines with research octane number (RON) ranging from 58 to 93 were studied. Overall, GCI operation resulted in enhanced premixed combustion, improved NOx-soot tradeoffs, and similar or moderately improved fuel efficiency compared to diesel combustion. A split fuel injection strategy was employed for the two lower reactivity gasolines (RON80 and RON93), while the RON60 and RON70 gasolines used a single fuel injection strategy.
Technical Paper

An On-Board Distillation System to Reduce Cold-Start Hydrocarbon Emissions

2003-10-27
2003-01-3239
An On-Board Distillation System (OBDS) was developed to extract, from gasoline, a highly volatile crank fuel that allows the reduction of startup fuel enrichment and significant spark retard during cold starts and warm-up. This OBDS was installed on a 2001 Lincoln Navigator to explore the emissions reductions possible on a large vehicle with a large-displacement engine. The fuel and spark calibration of the PCM were modified to exploit the benefits of the OBDS startup fuel. Three series of tests were performed: (1) measurement of the OBDS fuel composition and distillation curve per ASTM D86, (2) measurement of real-time cold start (20 °C) tailpipe hydrocarbon emissions for the first 20 seconds of engine operation, and (3) FTP drive cycles at 20 °C with engine-out and tailpipe emissions of gas-phase species measured each second. Baseline tests were performed using stock PCM calibrations and certification gasoline.
Technical Paper

Analysis For A Parallel Four-Wheel Propane Electric Hybrid Vehicle

1999-08-17
1999-01-2907
This paper analyzes the hybridization of a conventionally powered light duty front wheel drive pick up truck by adding an electric motor driven rear axle. Also studied are the effects of using propane fuel instead of gasoline. This hybrid powertrain configuration can be described as a parallel hybrid electric vehicle. Supervisory power management control has been developed to best determine the proportion of load to be provided by the engine and/or electric motor. To perform these analyses, a simulation tool (computer model of the powertrain components) was developed using MATLAB/SIMULINK'. The models account for the thermal and mechanical efficiencies of the components and are designed to develop control strategies for meeting road loads with improved fuel economy and reduced emissions. Results of this study have shown that fuel economy can be improved and emissions reduced using commercially available components (motor, rear axle, and lead acid batteries).
Journal Article

Analysis of Diesel Spray Momentum Flux Spatial Distribution

2011-04-12
2011-01-0682
In the present paper the results of an experimental and numerical analysis of a common-rail, high pressure Diesel spray evolving in high counter pressure conditions is reported. The experimental study was carried out mainly in terms of spray momentum flux indirect measurement by the spray impact method; the measurement of the impact force time-histories, along with the CFD analysis of the same phenomenon, gave interesting insight in the internal spray structure. As well known, the overall spray structure momentum flux along with the injection rate measurements can be used to derive significant details about the in-nozzle flow and cavitation phenomena intensity. The same global spray momentum and momentum flux measurement can be useful in determining the jet-to-jet un-uniformities also in transient, engine-typical injection conditions which can assist in the matching process between the injection system and the combustion chamber design.
Technical Paper

Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine

2017-03-28
2017-01-0673
Radio Frequency Corona ignition systems represent an interesting solution among innovative ignition strategies for their ability to stabilize the combustion and to extend the engine operating range. The corona discharge, generated by a strong electric field at a frequency of about 1 MHz, produces the ignition of the air-fuel mixture in multiple spots, characterized by a large volume when compared to a conventional spark, increasing the early flame growth speed. The transient plasma generated by the discharge, by means of thermal, kinetic and transport effects, allows a robust initialization of the combustion even in critical conditions, such as using diluted or lean mixtures. In this work the effects of Corona ignition have been analyzed on a single cylinder optical engine fueled with gasoline, comparing the results with those of a traditional single spark ignition.
Technical Paper

Artificial Intelligence Methodologies for Oxygen Virtual Sensing at Diesel Engine Intake

2012-04-16
2012-01-1153
In the last decades, worldwide automotive regulations induced the industry to dramatically increase the application of electronics in the control of the engine and of the pollutant emissions reduction systems. Besides the need of engine control, suitable fault diagnosis tools had also to be developed, in order to fulfil OBD-II and E-OBD requirements. At present, one of the problems in the development of Diesel engines is represented by the achievement of an ever more sharp control on the systems used for the pollutant emission reduction. In particular, as far as NOx gas is concerned, EGR systems are mature and widely used, but an ever higher efficiency in terms of emissions abatement, requires to determine as better as possible the actual oxygen content in the charge at the engine intake manifold, also in dynamic conditions, i.e. in transient engine operation.
Technical Paper

Aspects of Cabin Fluid Dynamics, Heat Transfer, and Thermal Comfort in Vehicle Thermal Management Simulations

2005-05-10
2005-01-2000
Automobile manufacturers and suppliers are under pressure to develop more efficient thermal management systems as fuel consumption and emission regulations become stricter and buyers demand greater comfort and safety. Additionally, engines must be very efficient and windows must deice and defog quickly. These requirements are often in conflict. Moreover, package styling and cost constraints severely limit the design of coolant and air conditioning systems. Simulation-based design and virtual prototyping can ensure greater product performance and quality at reduced development time and cost. The representation of the vehicle thermal management needs a scalable approach with 0-D, 1-D, and 3-D fluid dynamics, multi-body dynamics, 3-D structural analysis, and control unit simulation capabilities. Different combinations and complexities of the simulation tools are required for various phases of the product development process.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
X