Refine Your Search

Topic

Search Results

Journal Article

A Role of NO2 on Soot Oxidation in DPFs and Effect of Soot Cake Thickness in Catalyzed DPFs Using Temperature-Programmed Oxidation and Electron Microscopic Visualization

2020-09-15
2020-01-2201
Development of the diesel particulate filter (DPF) aims to attain fast oxidation of accumulated soot at low temperature. Numerous researchers have explored the characteristics of soot oxidation under ambient conditions of simulated exhaust gas using thermogravimetric analysis or a flow reactor. In this study, temperature programmed oxidation (TPO) experiments were carried out for soot entrapped in miniaturized DPFs, cut-out from practical particulate filters, yielding wall-flow features typically encountered in real-world DPFs. Furthermore, when using the miniaturized samples, highly accurate lab-scale measurements and investigations can be facilitated. Examining different temperature ramping rates used for the TPO experiments, we propose a rate of 10°C/min as the most effective in analyzing soot oxidation in the practical filter substrates.
Technical Paper

A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation

2000-06-19
2000-01-1892
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a discrete droplet spray model (DDM) coupled with the Shell kinetics model at various operating conditions. Predicted results show that the fuel mixture injected at the start of injection, which travels along midway between the spray axis and the spray periphery, contributes heavily to the first ignition in a spray. The equivalence ratio and temperature of the first ignited mixture are kept nearly constant until the start of hot ignition. The temperature of the first ignited mixture is kept at a constant value of higher temperature than the thermodynamic equilibrium temperature of the mixture before the hot ignition starts. The equivalence ratio of the first ignited mixture is around 1.6 at initial gas temperatures between 750 K and 850 K.
Technical Paper

A study of Multi-Functional Membrane Filters made of Fine Catalyst Particles

2023-09-29
2023-32-0125
A multi-functional membrane filter was developed through deposition of agglomerated Three-Way Catalyst particles with a size of 1 ~ 2 microns on the conventional bare particulate filter. The filtration efficiency reaches almost 100 % from the beginning of soot trapping with a low pressure drop and both reductions of NO and CO emission were achieved.
Technical Paper

Characteristics of Soot Oxidation at the Interface between Soot and Silicon-Oxy-Carbide with Embedded Single Nanosized Pt Particles

2013-04-08
2013-01-0516
A diesel particulate membrane filter (DPMF) offers good trapping efficiency of soot and reduces the pressure loss through the soot-trapping process. We found that one specific design of DPMF has the effect of reducing the apparent activation energy of the soot oxidation. The membrane is made of SiC nanoparticles with a diameter of 10-100 nm, which are covered with a thin silicon-oxy-carbide layer with a thickness of about 5 nm. The apparent activation energy of soot oxidation on the DPMF was reduced by 30-40 kJ/mol than conventional SiC-DPF. Furthermore, the light-off temperature of soot oxidation on the DPMF (with single nanosized Pt) is about 100°C lower than that of the DPMF (without Pt). The single nanosized Pt particles are embedded in the silicon-oxy-carbide layer. The formation of additional Pt is different from that which takes place in a conventional catalyzed soot filter (CSF). In a conventional CSF, the surface of the Pt particles is exposed to the atmosphere.
Technical Paper

Characterization of Biodiesel Particle Emission in Trapping and Regeneration Processes on Cordierite Diesel Particulate Filter

2015-11-17
2015-32-0821
As well-known, the diesel engine has the highest thermal efficiency at the same load as compared with internal combustion engine but its disadvantage is particulate matter (PM) emitted to the atmosphere. The studies of this paper were divided into two parts. The first part studied the quantity of PM from the both diesel and biodiesel fuels at 80% load (2400 rpm) by the trapping process on diesel particulate filter (DPF) used in a partial flow dilution tunnel. The second part studied the regeneration process of PM under the flow rate of oxygen and nitrogen gas of 13.5 L/min with 10%, 15%, and 21% of oxygen gas. The result showed that amount of PM from biodiesel fuel was lower around two times than PM from diesel fuel. The duration in regeneration process of biodiesel's PM was shorter than diesel while increasing of oxygen percentage can reduce regeneration time.
Technical Paper

Comparison Study on Fuel Properties of Biodiesel from Jatropha, Palm and Petroleum Based Diesel Fuel

2014-03-24
2014-01-2017
The increase of air pollution and global warming is a threat for human life. Besides, the price of petroleum is increasing rapidly and the resources are diminishing. This obliged scientists and engineers to look for alternative sources of energy, which are cleaner and more sustainable. Biodiesel, defined as mono-alkyls of esters from vegetable oils and animals fat, is a cleaner renewable fuel and has been considered as the best alternative for petroleum based diesel fuel hence it can be used in any compression ignition engines without any significant modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions due to their higher content of oxygen. The produce less soot and hence the feed stuck is plant it will regenerate the CO2 by the photosynthesis which ensures the renewability and reduces global warming.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Experimental Investigation in Combustion Characteristics of Ethanol-gasoline Blends for Stratified Charge Engine

2011-11-08
2011-32-0551
The increasing of global energy demand and stringent pollution regulations have promoted research on alternative fuels. In Thailand, ethanol, can be produced from many sources of national agriculture products as renewable fuel, which was strongly promoted by government due to its many merits for use in transportation field. In this study, combustion characteristics of ethanol-gasoline blend (20%, 85%, and 100%) as well as pure gasoline (E0) were investigated by using a swirl-generated constant volume combustion chamber. Flame propagations of different fuel blends were observed by high speed Schlieren photography technique while pressure history data were recorded for detailed combustion analysis. Combustion behavior, combustion duration and rate of pressure rise of all tested fuels were investigated in various swirl intensities and equivalence ratios. In addition, effect of swirl intensities and ethanol concentration on lean misfire limit were also discussed.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Impact of TiO2 and V2O5 on Sintered Mullite Porous Microstructure and Soot Oxidation Kinetics Using SEM and TGA

2019-03-25
2019-01-1407
The exhaust emissions from diesel combustion are the sources of particulate matter emitted to the atmosphere, which are components of air pollution that implicated in human health such as lung cancer. At present the diesel particulate filter can remove PM from the exhaust gas before emitted to the atmosphere. This research is investigating morphology and structure of acicular mullite to develop the fabrication process filter in order to study particulate matters trapping and oxidation mechanisms. This paper used two main substances to study the structure of diesel particulate filter (DPFs); Aluminum oxide (Al2O3) and Silicon dioxide (SiO2). These are mainly in the conventional DPFs. The variable substances are Titanium dioxide (TiO2) and Vanadium oxide (V2O5), which added to investigate and produce the acicular mullite DPFs structure. The mullite samples were sintered at 1300 oC with holding time of 1 h.
Technical Paper

Investigation of Effects of Ignition Improvers on Ignition Delay Time of Ethanol Combustion with Rapid Compression and Expansion Machine

2012-04-16
2012-01-0854
This work investigates the effects of ignition improvers on the ignition and combustion characteristics of hydrous ethanol with 5% by weight water and 1% by weight Lauric acid (Eh95) under simulated diesel engine conditions using the rapid compression and expansion machine (RCEM). Results indicate that hydrous ethanol with commercial additive (ED95) and hydrous ethanol with 5% by weight glycerol ethoxylate in hydrous ethanol exhibit a near identical rate-of-pressure-rise and heat release rate. Ignition delay of hydrous ethanol with 5% by weight glycerol ethoxylate is shorter, but hydrous ethanol with 1% by weight glycerol ethoxylate has longer ignition delay time and different combustion characteristics compared with hydrous ethanol with commercial additive (ED95). Hydrous ethanol with 1% by weight glycerol ethoxylate and hydrous ethanol with 5% by weight glycerol ethoxylate are considered suitable fuels for high compression-ratio diesel engines.
Journal Article

Investigation of Soot Oxidation Carried out on Membrane Filters Composed of SiC Nanoparticles

2015-09-01
2015-01-2015
The diesel particulate membrane filter (DPMF) is a good solution to the problem of high pressure drop that exists across diesel particulate filters (DPFs) as a result of the soot trapping process. Moreover, DPMFs that have a membrane layer composed of SiC nanoparticles can reduce the oxidation temperature of soot and the apparent activation energy. The SiC nanoparticles have an oxide layer on their surface, with a thickness less than 10 nm. From the visualization of soot oxidation on the surface of SiC nanoparticles by an environmental transmission electron microscope (ETEM), soot oxidation is seen to occur at the interface between the soot and oxide layers. The soot oxidation temperature dependency of the contact area between soot and SiC nanoparticles was evaluated using a temperature programmed reactor (TPR). The contact area between soot and SiC nanoparticles was varied by changing the ratio of SiC nanoparticles and carbon black (CB), which was used as an alternative to soot.
Technical Paper

Lattice Boltzmann Simulation on Particle Transport and Captured Behaviors in a 3D-Reconstructed Micro Porous DPF

2010-04-12
2010-01-0534
In this study, particle transport and captured behaviors in a Diesel Particulate Filter (DPF) was investigated with Lattice Boltzmann Method. LBM calculation was performed to a 3D-reconstructed micro porous DPF substrate, which was obtained by micro-focus 3D X-ray technique. Simulating advection-diffusion behaviors of diesel particulates in micro porous channel, we adapted a LBM method used for high Peclet number flow, simulating flow conditions in DPFs. We investigated flow behaviors in a wide variety of inlet velocity. LBM simulation has clearly shown that non-dimensional flow field is similar in wide range of flow conditions in the DPF, because flow Reynolds number in the micro porous substrate is sufficiently low, dominated by laminar flow regime. It was also revealed that less than 40% pore channels was responsible for more than 80% volume flux in the porous substrate without particle loading.
Technical Paper

Low Temperature Starting Techniques for Ethanol Engine without Secondary Fuel Tank

2011-11-08
2011-32-0552
The present study aims to investigate the parameters affecting cold start characteristics of ethanol at low temperature, and suggest a solution to avoid cold starting problem without the installation of second fuel tank. The testing engine is a 125cc volume displacement, single-cylinder four strokes SI engine with fuel injection and ignition timing system controlled by ECU (electronic control unit). The cold starting performance tests were extensively conducted with different percentages of ethanol blends, surrounding temperatures, heating inside combustion chamber, heater injector, pre-cranking without fuel injection, and amount of fuel injection. From the experimental results, when using ethanol fuel in conventional engine, the problem of cold starting was observed at surrounding temperature lower than 20°C for ethanol. Increasing of injection duration can lower the possible cold start temperature of neat ethanol.
Journal Article

Microscopic Visualization of PM Trapping and Regeneration in Micro-Structural Pores of a DPF Wall

2009-04-20
2009-01-1476
Trapping and regeneration processes in a SiC wall-flow diesel particulate filter (DPF) without a catalyst were investigated in detail through microscopic visualization. By microscopic observation of the cross section and surface, the transition from depth filtration to surface filtration could be observed clearly. The open pores on the wall surface were strongly related to the filtration depth of diesel particulate matter (PM). During the regeneration process, after the soot cake was burnt out, the particulates trapped inside the surface pores were oxidized. As a result, the particulate trapping and oxidation behaviors were strongly dependent on the microstructural surface pores.
Technical Paper

Multi-Step Water Splitting with Mn-Ferrite/Sodium Carbonate System

1999-08-02
1999-01-2670
Multi-step water splitting with Mn-ferrite(MnFe2O4)/sodium carbonate(Na2CO3) system accompanying endothermic reaction was investigated for converting solar energy into chemical energy. This water splitting is caused by the oxidation-reduction of manganese ion in the Mn-ferrite. Multi-water splitting with MnFe2O4/Na2CO3 system was consisted of three steps. The first step was hydrogen generation at 1073K. The second step was oxygen release at 1273K. The third step was Na2CO3 reproduction at 873K. The mechanism of multi-water splitting has been considered by XRD, chemical analysis of colorimetry and back titration. The temperature range 873 to 1273K is quite lower than those studied on the solar furnace reaction (O2 releasing step) in two-step water splitting (1500-2300K). This lower temperature range would permit further progress in converting the direct solar energy into chemical energy.
Technical Paper

NOx Reduction with the HC-SCR System over Cu/Zeolite Based Catalysts

2015-09-01
2015-01-2012
Diesel engine is one the effective solutions for reducing CO2 and recognized as a leading candidate for mitigating global warming. To comply with increasingly stringent emission standards, all diesel engines require some sort of NOx control systems such as selective catalytic reduction (SCR) systems. The SCR catalyst for reducing NOx from diesel engines is classified into two groups, urea-SCR and HC-SCR catalyst, respectively. Although the urea-SCR catalyst is widely recognized as promising de-NOx technology in respect to the NOx conversion efficiency, it have some outstanding issues such as ammonia slip, urea injection, storage space, freezing and some infrastructures for supplying urea water solutions. In an attempt to overcome the inherent shortcoming of existing urea-SCR catalyst, hydrocarbons have been considered as alternative reducing agents for SCR process, instead of NH3.
Journal Article

Particulate Matter Trapping and Oxidation on a Catalyst Membrane

2010-04-12
2010-01-0808
Particulate matter (PM) trapping and oxidation in regeneration on the surface of a diesel particulate catalyst-membrane filter (DPMFs) were investigated in detail using an all-in-focus optical microscope. The DPMF consists of two-layer sintered filters, where a SiC-nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) covers the surface of a conventional SiC filter. Using a visualization experiment, it was shown that PMs were trapped homogeneously along fine surface pores of the membrane's top surface, whereas in the regeneration process, the particulates in contact with the membrane may have been oxidized with some catalytic effect of the SiC nanoparticles. A soot cake was reacted continuously on the nanoparticles since pushed by a gas flow. The oxidation temperature of particulate trapped on the SiC-nanoparticle membrane was about 75 degrees lower than that on the conventional diesel particulate filters (DPF) without a catalyst.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

Real-World Emission Analysis Methods Using Sensor-Based Emission Measurement System

2020-04-14
2020-01-0381
Every year, exhaust gas regulations are getting stricter with the intention to solve the average air pollution problem, however, local roadside pollution is still a pressing issue. In order to solve this local roadside pollution problem, it is necessary to evaluate and/or predict “where” and “how much” pollutants such as NOx are emitted. To predict the local roadside pollution, it is necessary to collect emissions data from various kinds of vehicles driving on real-world and analyze them. In recent years, Real Driving Emission regulations using PEMS (Portable Emission Measurement System) have been introduced mainly in Europe. A typical PEMS configuration can weigh close to 100 kg however, and its weight affects the driving conditions of vehicles running on actual roads. In this study, we focused on the analysis of real-world emissions using SEMS (Sensor-based Emission Measurement System).
X