Refine Your Search

Topic

Search Results

Technical Paper

A Localization System for Autonomous Driving: Global and Local Location Matching Based on Mono-SLAM

2018-08-07
2018-01-1610
The utilization of the SLAM (Simultaneous Localization and Mapping) technique was extended from the robotics to the autonomous vehicles for achieving the positioning. However, SLAM cannot obtain the global position of the vehicle but a relative one to the start. For sake of this, a fast and accurate system was proposed to obtain both the local position and the global position of vehicles based on mono-SLAM which realized the SLAM by using monocular camera with a lower cost and power consumption. Firstly, the rough latitude and longitude of current position was obtained by using common GPS without differential signal. Then, the Mono-SLAM operated on the consecutive video frames to generate the localization and local trajectory and its accuracy was further improved by utilizing the IMU information. After that, a piece of Map centered in the rough position obtained by common GPS was downloaded from the Open Street Map.
Technical Paper

A New Method for Determination of Forming Limit Diagram Based on Digital Image Correlation

2013-04-08
2013-01-1421
In this paper, a new method for determining the forming limit diagram (FLD) of thin sheet metals, called DIC-Grid method, is proposed based on digital image correlation (DIC) technique. It's assumed that there exists one virtual grid with an initial diameter of 2.5mm, which is usually the same dimension as the grid in traditional circular grid analysis, close to the crack of specimen, and the limit strain point on FLD is determined by the deformation of this virtual grid. The DIC-Grid method has been compared with traditional circular grid analysis and the standard ISO/FDIS 12004-2 in Nakajima tests. The results show that the forming limit strains obtained by the newly proposed method are more stable and precise. Furthermore, DIC-Grid method can avoid the measurement error which exists in the circular grid analysis. Meanwhile, it overcomes the shortcomings of time-consuming data processing and non-applicable for unrealistic strain distribution in the method of ISO standard.
Technical Paper

A New Method of Target Detection Based on Autonomous Radar and Camera Data Fusion

2017-09-23
2017-01-1977
Vehicle and pedestrian detection technology is the most important part of advanced driving assistance system (ADAS) and automatic driving. The fusion of millimeter wave radar and camera is an important trend to enhance the environmental perception performance. In this paper, we propose a method of vehicle and pedestrian detection based on millimeter wave radar and camera. Moreover, the proposed method complete the detection of vehicle and pedestrian based on dynamic region generated by the radar data and sliding window. First, the radar target information is mapped to the image by means of coordinate transformation. Then by analyzing the scene, we obtain the sliding windows. Next, the sliding windows are detected by HOG features and SVM classifier in a rough detect. Then using the match function to confirm the target. Finally detecting the windows in a precision detection and merging the detecting windows. The target detection process is carried out in the following three steps.
Technical Paper

A Novel Closed Loop Control based on Ionization Current in Combustion Cycle at Cold Start in a GDI Engine

2012-04-16
2012-01-1339
As the invalidation of the oxygen sensor in the initial cycles at cold start, the engine can not operate based on the closed loop control based on oxygen sensor. And it may result in the misfire events and higher hydrocarbon (HC) emissions during this period. To solve this problem, a novel closed loop control based on ionization current in combustion cycle is proposed. The in-cylinder combustion quality is monitored by means of the ion current detection technique; meanwhile, if the misfire event is detected in the combustion cycle, the spark re-ignition is made in the current combustion cycle. In addition, to optimize the combustion and reduce HC emissions during cold start, the fuel injection quantity and ignition timing in the next cycle are adjusted based on the current ion current signal.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Journal Article

Characteristics of Lubricants on Auto-ignition under Controllable Active Thermo-Atmosphere

2016-04-05
2016-01-0889
Downsizing gasoline direct injection engine with turbo boost technology is the main trend for gasoline engine. However, with engine downsizing and ever increasing of power output, a new abnormal phenomenon, known as pre-ignition or super knock, occurs in turbocharged engines. Pre-ignition will cause very high in-cylinder pressure and high oscillations. In some circumstances, one cycle of severe pre-ignition may damage the piston or spark plug, which has a severe influence on engine performance and service life. So pre-ignition has raised lots of attention in both industry and academic society. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. The auto-ignition characteristics of different lubricants are studied. This paper focuses on the ignition delay of different lubricants in Controllable Active Thermo-Atmosphere (CATA) combustion system.
Technical Paper

Closed Loop Control of SI/HCCI Combustion Mode Switch Based on Ion Current Feedback

2014-10-13
2014-01-2704
Gasoline direct injection (GDI) technology is admitted to be one of the most effective measures to improve the fuel economy for the spark ignition (SI) engines. Homogeneous Charge Compression Ignition (HCCI) combustion has advantages of low fuel consumption and ultra low NOx emissions. But the difficulty in the autoignition control and the narrow operation region inhibit the practical application of this technology. A hybrid combustion mode which combines SI mode and HCCI mode in separated working regions was regarded as a promising technology for HCCI engines. In addition, monitoring and providing feedback to the in-cylinder combustion characteristics is generally considered to be an effective method to improve and to optimize the combustion process. A lot of combustion information is included in the ion current generated by the in-cylinder combustion, and hence the ion current detection technique is considered to be a potential combustion feedback method.
Technical Paper

Development of a Compact Compound Power-Split Hybrid Transmission Based on Altered Ravigneaux Gear Set

2014-04-01
2014-01-1793
Several types of power-split hybrid transmissions are outlined and the strengths and weaknesses of typical compound power-split prototype designs are summarized in this paper. Based on an modified Ravigneaux gear set, a novel compound power-split hybrid transmission with compact mechanical structure is presented, its dynamic and kinematic characteristics in equations and operating modes are described, and then equivalent lever diagrams are used to investigate the proposed compound power-split device. Control strategies in different operating modes are discussed with the simplified combined lever diagram, and a global optimization method is implemented to find the optimum operation point for the hybrid powertrain. To evaluate the fuel economy of a hybrid car equipped with this hybrid transmission, a forward powertrain simulation model is developed and real vehicle performance tests are conducted in the chassis dynamometer.
Technical Paper

Effect of First Cycle Fuel Injection Timing on Performance of a PFI Engine during Quick Start for HEV Application

2011-04-12
2011-01-0886
Idle stopping is one of the most important fuel saving methods for hybrid electric vehicle (HEV). While the enriched injection strategy which was employed to ensure reliable ignition of first cycle will leads to even more fuel film stayed in the intake port, all of the liquid film will evaporate randomly and interfere the mixture air-fuel ratio of the followed cycles. The fuel transport of the first cycle should be enhanced to reduce the residual fuel film, and then the control of the cycle-by-cycle air-fuel ratio will become easier and the combustion and HC emissions will also be better. In this paper the mixture preparation characteristics of the unfired first cycle, as well as the combustion and HC emissions characteristics of the fired first cycle under various injection timing strategies such as close-valve injection, mid-valve injection, and open-valve injection were investigated.
Technical Paper

Effect of Nozzle Geometry on Macroscopic Behavior of Diesel Spray in the Near-Nozzle Field

2013-04-08
2013-01-1587
In this study, the orifice inlet rounding radii of four diesel nozzles with different hydro erosive grinding time were measured based on the x-ray CT scan technology provided by Shanghai Synchrotron Radiation Facility (SSRF), and a wide parametrical study of the spray macroscopic behavior in the first 18 mm from the nozzle tip have been carried out with high speed camera. And then the influence of orifice inlet rounding radius on the spray behavior in the near-nozzle field was thoroughly investigated. The investigation results show that: the mean values of orifice inlet rounding radii of different nozzles are measured to be on the order of 21.5-56.8 μm. Although the spray tip penetrations of different nozzles tend to increase with the hydro erosive grinding time through statistical analyzing method, the variations of penetration from nozzles are less than 15% according to different hydro erosive grinding timing.
Technical Paper

Effect of Stratification on Ion Distribution in HCCI Combustion Using 3D-CFD with Detailed Chemistry

2013-10-14
2013-01-2512
Ion current sensing, which usually employs a spark plug as its sensor to obtain feedback signal from different types of combustion in SI engines, may be applied to HCCI combustion sensing instead of a prohibitively expensive piezoelectric pressure transducer. However, studies showed that the ion current detected by a spark plug sensor is a localized signal within the vicinity of the sensor's electrode gap, being affected by conditions around it. To find out better and feasible ion probe positions, a 3D-CFD model with a detailed surrogate mechanism containing 1423 species and 6106 reactions was employed to study the effect of stratification on ion distribution in HCCI combustion. The simulation results indicate that the monitor probe 1, 8 and 9 are more stable and reliable than the others. IONmax and dIONmax are more accurate to estimate CA50 and dQmax respectively.
Technical Paper

Effect of Two-Stage Valve Lift for Fuel Economy and Performance on a PFI Gasoline Engine

2014-10-13
2014-01-2874
Reducing the pumping loss, and thus, the fuel consumption of gasoline engine at part load, a two-stage intake valve lift system was implanted into a PFI engine. A corresponding engine model was set up with GT-power as well, which can simulate the effect of two-stage intake valve lift and different EGR rates on fuel economy performance and on combustion condition of a gasoline engine. Based on simulation results, the valve lift control strategy and EGR control strategy was studied in this paper. Results showed that at low engine speed, when SMALL LIFT was used, the tumble flow and the combustion process in cylinder was improved and burn time duration became shorter, resulting in higher indicated efficiency and lower fuel consumption than by LARGE LIFT. With the introduction of the exhaust gas recirculation (EGR), lower fuel consumption was acquired.
Technical Paper

Evaluation of Global and Local Deformation Behaviors of Similar Laser Welded Joints using Digital Image Correlation

2014-04-01
2014-01-0832
Similar laser welded blanks with same material and same gauge have been extensive applied in automobile body for improving the material utilization and extending maximum coil size. It is known that, for TWBs with dissimilar material and thicknesses, the difference of material properties and/or thickness of the welded blanks, change of the material properties in the weld seam and heat-affected zones (HAZ) as well as location and orientation of the weld seam are reasons for reduced formability. However, the plastic deformation capacity of TWBs is reduced even when the material and thickness are the same. The aim of this paper is to evaluate the deformation behaviors of similar laser welded joints. Uniaxial tensile of five laser welded joints, with 90°,60°,45°,30°and 0°weld orientations, were tested by using optical measurement-DIC (Digital Image Correlation). Strain /strain ratio distribution and evolution of each joint was analyzed and compared with base material.
Technical Paper

Evaporation Characteristics of n-Heptane Droplet Streams in a Heated Air Channel Flow

2016-04-05
2016-01-0843
An experimental study is presented on the evaporation of diluted droplet-laden two-phase jet flows within a heated air channel co-flow. In this study, n-heptane is pre-atomized by an ultrasonic nozzle to produce droplet cluster with a median diameter of about15μm, and a continuous cold air flow is applied to carry the fuel droplet cluster to emerge from a nozzle tube, producing a free turbulent jet of droplet stream. The droplet stream is then introduced as a central jet into a square-shaped channel with heated air co-flow for evaporation investigations. With flexibilities of the initial properties of droplet stream and surrounding conditions of channel flow, the axial evolution of droplet size is determined to characterize the evaporation behavior of n-heptane droplet stream under various boundary conditions. The equivalence ratios of droplet streams are varied by changing both the carrier-air flow rate and the fuel flow rate.
Technical Paper

Investigations on Mixture Formation during Start-UP Process of a Two-Stage Direct Injection Gasoline Engine for HEV Application

2013-10-14
2013-01-2657
A cycle-resolved test system was designed in a Two Stage Direct Injection (TSDI) Gasoline engine to simulate the engine quick start process in an Integrated Start and Generator (ISG) Hybrid Electric Vehicle (HEV) system. Based on the test system, measurement of the in cylinder HC concentrations near the spark plug under different engine coolant temperature and cranking speed conditions were conducted using a Fast Response Flame Ionization Detector (FFID) with Sampling Spark Plug (SSP) fits, then the in-cylinder equivalence ratio near the spark plug was estimated from the measured HC concentrations. In addition, the effects of the 1st injection timing, 2nd injection timing, and total equivalence ratio on the mixture formation near the spark plug were analyzed by means of experiments.
Technical Paper

Nucleation Mode Particle Emissions from a Diesel Engine with Biodiesel and Petroleum Diesel Fuels

2010-04-12
2010-01-0787
Effects of biodiesel fuel on nucleation mode particles were studied on a direct injection, high pressure common-rail diesel engine for passenger cars. Particle number and size distribution of the diesel engine were obtained using an Engine Exhaust Particle Sizer (EEPS). The base petroleum diesel, three different blend ratios of petroleum diesel/biodiesel (10%, 20% and 50% v/v biodiesel blend ratios), and the pure biodiesel fuel (obtained and converted from Jatropha seed in China) (B0, B10, B20, B50 and B100 fuels) were tested without engine modification. Experiments were performed on a series of engine operating conditions. The particle number size distribution of the engine shows unimodal or bimodal log-normal distribution. With the biodiesel blend ratios increasing, the number of nucleation mode particles increases at all test engine operating conditions and accumulation mode particles decreases at most engine operating conditions.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Semantic Segmentation for Traffic Scene Understanding Based on Mobile Networks

2018-08-07
2018-01-1600
Real-time and reliable perception of the surrounding environment is an important prerequisite for advanced driving assistance system (ADAS) and automatic driving. And vision-based detection plays a significant role in environment perception for automatic vehicles. Although deep convolutional neural networks enable efficient recognition of various objects, it has difficulty in accurately detecting special vehicles, rocks, road pile, construction site, fence and so on. In this work, we address the task of traffic scene understanding with semantic image segmentation. Both driveable area and the classification of object can be attained from the segmentation result. First, we define 29 classes of objects in traffic scenarios with different labels and modify the Deeplab V2 network. Then in order to reduce the running time, MobileNet architecture is applied to generate the feature map instead of the original models.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

Spray Characteristics and Wall-impingement Process with Different Piston Tops for the Multi-hole Injector of DISI Gasoline Engines

2011-04-12
2011-01-1222
Spray characteristics and spray wall-impingement events are the key factors for the direct injection spark ignition (DISI) engines, affecting fuel/air mixture preparation and its combustion process. Thus, the spray characteristics of a multi-hole injector for DISI engines, such as spray tip penetration and spray cone angle were investigated in an optical chamber employing the high-speed shadow photography. Furthermore, the effects of the injection pressure, ambient pressure and piston top shape on the impinging spray development were studied in the optical chamber, when the impinging distance is 26.1 mm, corresponding to about 60 CAD ATDC. In addition, the SMD and wall film thickness of the spray impinging on the piston top were studied by means of CFD technique. The results showed that the ambient pressure had the greater effect on the changes of the spray penetration and spray cone angle than the injection pressure.
X