Refine Your Search

Topic

Search Results

Technical Paper

A Novel Closed Loop Control based on Ionization Current in Combustion Cycle at Cold Start in a GDI Engine

2012-04-16
2012-01-1339
As the invalidation of the oxygen sensor in the initial cycles at cold start, the engine can not operate based on the closed loop control based on oxygen sensor. And it may result in the misfire events and higher hydrocarbon (HC) emissions during this period. To solve this problem, a novel closed loop control based on ionization current in combustion cycle is proposed. The in-cylinder combustion quality is monitored by means of the ion current detection technique; meanwhile, if the misfire event is detected in the combustion cycle, the spark re-ignition is made in the current combustion cycle. In addition, to optimize the combustion and reduce HC emissions during cold start, the fuel injection quantity and ignition timing in the next cycle are adjusted based on the current ion current signal.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper

Analysis and Design of Dual-Motor Electro-Hydraulic Brake System

2014-09-28
2014-01-2532
In this paper, by analyzing multiple electro-hydraulic brake system schemes in detail, the idea of dual-motor electro-hydraulic brake system is proposed. As a new solution, the dual-motor electro-hydraulic brake system can actively simulate pedal feel, make the most of pedal power (from the driver), and reduce the maximum power output of each active power source remarkably, which is a distinctive innovation compared to most current electro-hydraulic brake systems. Following the proposed concept, a general research thought and method is conceived, and then a dual-motor electro-hydraulic brake system is designed. Finally, the simulation model is set up in AMESim software and its feasibility is simulated and verified.
Technical Paper

CFD Modeling of Mini and Full Flow Burner Systems for Diesel Engine Aftertreatment under Low Temperature Conditions

2012-09-24
2012-01-1949
With introductions of stringent diesel engine emission regulations, the DOC and DPF systems have become the mainstream technology to eliminate soot particles through diesel combustion under various operation conditions. Urea-based SCR has been the mainstream technical direction to reduce NOx emissions. For both technologies, low-temperature conditions or cold start conditions pose challenges to activate DOC or SCR emission-reduction performance. To address this issue, mini or full flow burner systems may be used to increase exhaust temperature to reach DOC light-off or SCR initiation temperature by combustion of diesel fuel. In essence, the burner systems incorporate a fuel injector, spray atomization, proper fuel / air mixing mechanisms, and combustion control as independent heat sources.
Journal Article

Characteristics of Lubricants on Auto-ignition under Controllable Active Thermo-Atmosphere

2016-04-05
2016-01-0889
Downsizing gasoline direct injection engine with turbo boost technology is the main trend for gasoline engine. However, with engine downsizing and ever increasing of power output, a new abnormal phenomenon, known as pre-ignition or super knock, occurs in turbocharged engines. Pre-ignition will cause very high in-cylinder pressure and high oscillations. In some circumstances, one cycle of severe pre-ignition may damage the piston or spark plug, which has a severe influence on engine performance and service life. So pre-ignition has raised lots of attention in both industry and academic society. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. The auto-ignition characteristics of different lubricants are studied. This paper focuses on the ignition delay of different lubricants in Controllable Active Thermo-Atmosphere (CATA) combustion system.
Technical Paper

Control Optimization of a Compound Power-Split Hybrid Transmission for Electric Drive

2015-04-14
2015-01-1214
A novel compound power-split hybrid transmission based on a modified Ravigneaux gear set is presented. The equivalent lever diagrams are used to investigate the electric operating modes for the hybrid powertrain, and then its dynamic and kinematic characteristics as well as efficiency characteristics are described in equations. A brake clutch mounted on the carrier shaft is proposed to enhance the electric driving efficiency for the hybrid transmission. Three types of electric operating mode are analyzed by the simplified combined lever diagrams and the system efficiency and torque characteristics for these electric operating modes are compared. A major influence on output torque of the hybrid transmission derived from the torque capability of motors and brake clutch is depicted.
Technical Paper

Coordinated Control under Transitional Conditions in Hybrid Braking of Electric Vehicle

2018-10-05
2018-01-1869
In the hybrid brake system of electric vehicle, due to the limitation of the motor braking force when the motor is at high speed and the failure of the regenerative braking force when the motor is at low speed, there are three transitional conditions in hybrid braking: the hydraulic brake system intervenes the braking, the hydraulic brake system withdraws the braking and the regenerative braking force withdraws the braking. Due to the response speed of the hydraulic system is slower than that of the motor, there is a large braking impact (the derivative of braking deceleration) in the transitional conditions of hybrid braking, which deteriorates the smoothness and comfort in braking. Aiming at the impact caused by the poor cooperation between the hydraulic braking force and the motor braking force, a coordinated strategy of double closed-loop feedback and motor force correction is proposed in this paper.
Technical Paper

Correlation of Objective and Subjective Evaluation in Automotive Brake Pedal Feel

2018-10-05
2018-01-1889
In order to establish the correlation between objective and subjective evaluation of brake pedal feel for passenger cars, road tests of brake pedal feel were carried out and an evaluation method was proposed. In the road tests, subjective scores and objective measurements were obtained under the conditions of uniform and emergency braking. The objective measurements include pedal preload, low deceleration pedal force and travel, moderate deceleration pedal force and travel, brake response time and brake linearity. Using the theory of analytic hierarchy process (AHP), the design process of the evaluation method was established. Key setups including the hierarchical structure model, the judgement matrix and the score calculation method of objective measurements were described in detail. Then, the correlation between subjective and objective scores was analyzed. It can be concluded that the evaluation method is effective and it can be applied to brake pedal feel assessment and adjustment.
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
Technical Paper

Effect of Ageing Catalyzed Continuously Regenerating Trap on Particulate Emissions from Urban Diesel Bus Based on On-road Test

2014-10-13
2014-01-2802
Durability and performance evaluation of the ageing catalyzed continuously regenerating trap (CCRT) on solid and volatile particles from diesel bus were studied through a set of transient TSI engine exhaust particle sizer spectrometer based on on-road test. Particle characteristics under stepped steady conditions and during regeneration were discussed in detail. Under idle and stepped steady conditions, total particle number and mass Emission Rate (ER) of each test presented rising trends as speed increase. Total number ERs of all tests showed downtrend as the CCRT aging. The particle number size distributions at different ageing stage showed changing characteristics due to developing filter mechanism. Compared with baseline data, the total number reduction rates at idle condition were incremental, from 91.4% to 98.9% as the CCRT ageing. Percentages of nuclei mode concentrations took higher range from 66.6% to 89.9% compared with the baseline data, 43.2-43.7%.
Technical Paper

Effect of Stratification on Ion Distribution in HCCI Combustion Using 3D-CFD with Detailed Chemistry

2013-10-14
2013-01-2512
Ion current sensing, which usually employs a spark plug as its sensor to obtain feedback signal from different types of combustion in SI engines, may be applied to HCCI combustion sensing instead of a prohibitively expensive piezoelectric pressure transducer. However, studies showed that the ion current detected by a spark plug sensor is a localized signal within the vicinity of the sensor's electrode gap, being affected by conditions around it. To find out better and feasible ion probe positions, a 3D-CFD model with a detailed surrogate mechanism containing 1423 species and 6106 reactions was employed to study the effect of stratification on ion distribution in HCCI combustion. The simulation results indicate that the monitor probe 1, 8 and 9 are more stable and reliable than the others. IONmax and dIONmax are more accurate to estimate CA50 and dQmax respectively.
Technical Paper

Effect of Water Injection Temperature on Characteristics of Combustion and Emissions for Internal Combustion Rankine Cycle Engine

2014-10-13
2014-01-2600
The present work discusses a novel oxyfuel combustion method named internal combustion rankine cycle (ICRC) used in reciprocating engines. Water is heated up through heat exchanger by exhaust gas and engine cooling system, and then injected into the cylinder near top dead center to control the combustion temperature and in-cylinder pressure rise rate, meanwhile to enhance the thermo efficiency and work of the combustion cycle. That is because injected water increases the mass of the working fluid inside the cylinder, and can make use of the combustion heat more effectively. Waste heat carried away by engine coolant and exhaust gas can be recovered and utilized in this way. This study investigates the effect of water injection temperature on the combustion and emission characteristics of an ICRC engine based on self-designed test bench. The results indicate that both indicated work and thermal efficiency increase significantly due to water injection process.
Technical Paper

Evaluation of Global and Local Deformation Behaviors of Similar Laser Welded Joints using Digital Image Correlation

2014-04-01
2014-01-0832
Similar laser welded blanks with same material and same gauge have been extensive applied in automobile body for improving the material utilization and extending maximum coil size. It is known that, for TWBs with dissimilar material and thicknesses, the difference of material properties and/or thickness of the welded blanks, change of the material properties in the weld seam and heat-affected zones (HAZ) as well as location and orientation of the weld seam are reasons for reduced formability. However, the plastic deformation capacity of TWBs is reduced even when the material and thickness are the same. The aim of this paper is to evaluate the deformation behaviors of similar laser welded joints. Uniaxial tensile of five laser welded joints, with 90°,60°,45°,30°and 0°weld orientations, were tested by using optical measurement-DIC (Digital Image Correlation). Strain /strain ratio distribution and evolution of each joint was analyzed and compared with base material.
Technical Paper

Fatigue Design and Analysis of the Vehicle Exhaust System's Hanger

2013-10-14
2013-01-2609
The weight of an exhaust system on a modern vehicle is increasing because of all kinds of reasons, like engine power's increasing, more catalysts for emission control and more NVH (Noise, Vibration and Harshness) performance requirements. After the engine starting, the exhaust system was not only bearing a cyclical load from the engine, which mainly causing the vibration of the exhaust system, but also the loads from the road, which was transferred through the wheels, the suspension system and the body. Because the exhaust system always worked in these bad conditions, its structural strength, durability and life-time were analyzed in the paper, by numerical simulation and physical correlation. By discretizing the exhaust system's CAD model, a finite element model was built. After restrict the finite element model as it in a real load condition, complete the structure stress analysis and Fatigue analysis of exhaust system's hanger with FEA analysis tools.
Technical Paper

Hybrid Brake System Control Strategy in Typical Transient Conditions

2014-04-01
2014-01-0267
The control in transient conditions when hydraulic brake and regenerative brake switch mutually is the key technical issue about electric vehicle hybrid brake system, which has a direct influence on the braking feel of driver and vehicle braking comfort. A coordination control system has been proposed, including brake force distribution correction module and motor force compensation module. Brake force distribution correction module has fixed the distribution results in hydraulic brake force intervention condition, hydraulic brake force evacuation condition and regenerative brake force low speed evacuation condition. Motor compensation module has compensated hydraulic system with motor system, which has fast and accurate response, thus the response of whole hybrid system has been improved.
Technical Paper

Investigations on Mixture Formation during Start-UP Process of a Two-Stage Direct Injection Gasoline Engine for HEV Application

2013-10-14
2013-01-2657
A cycle-resolved test system was designed in a Two Stage Direct Injection (TSDI) Gasoline engine to simulate the engine quick start process in an Integrated Start and Generator (ISG) Hybrid Electric Vehicle (HEV) system. Based on the test system, measurement of the in cylinder HC concentrations near the spark plug under different engine coolant temperature and cranking speed conditions were conducted using a Fast Response Flame Ionization Detector (FFID) with Sampling Spark Plug (SSP) fits, then the in-cylinder equivalence ratio near the spark plug was estimated from the measured HC concentrations. In addition, the effects of the 1st injection timing, 2nd injection timing, and total equivalence ratio on the mixture formation near the spark plug were analyzed by means of experiments.
Technical Paper

Mechanism Study on Time-Varying Characteristics of Frictional Squeal in Pin-on-Disc System

2014-09-28
2014-01-2517
Disc brake squeal has always been a great challenge to the automotive industry. Based on the pin-on-disc system, a series of frictional squeal bench tests are carried out, which show significant time-varying characteristics on occurrence, sound pressure and frequency of frictional squeal. To investigate the generation mechanism of time-varying characteristics of frictional squeal, a four-degree-of-freedom (4DOF) lumped parameter model considering the time-varying tangential contact stiffness, the normal contact stiffness and the friction coefficient is established in this paper. Through both the system stability analysis and the transient response analysis, the time-varying frictional squeal is predicted successfully, and the generation mechanism and the key impact factors are also investigated in depth.
Technical Paper

Nonlinear Estimation of Vehicle Sideslip Angle Based on Adaptive Extended Kalman Filter

2010-04-12
2010-01-0117
An adaptive sideslip angle observer based on discrete extended Kalman filter (DEKF) is proposed in this paper and tire-road friction adaptation is also considered. The single track vehicle model with nonlinear tire characteristics is adopted. The tire parameters can be easily obtained through road test data without using special test rig. Afterwards, this model is discretized and the maximum value of tire-road friction is modeled as the third state variable. Through the measurement of vehicle lateral acceleration and yaw rate, the tire-road adhesion coefficient can be timely updated. Simulations with experimental data from road test and driving simulator have confirmed that DEKF has very high accuracy. The convergent speed of DEKF relies on the magnitude of lateral excitation.
Technical Paper

Nucleation Mode Particle Emissions from a Diesel Engine with Biodiesel and Petroleum Diesel Fuels

2010-04-12
2010-01-0787
Effects of biodiesel fuel on nucleation mode particles were studied on a direct injection, high pressure common-rail diesel engine for passenger cars. Particle number and size distribution of the diesel engine were obtained using an Engine Exhaust Particle Sizer (EEPS). The base petroleum diesel, three different blend ratios of petroleum diesel/biodiesel (10%, 20% and 50% v/v biodiesel blend ratios), and the pure biodiesel fuel (obtained and converted from Jatropha seed in China) (B0, B10, B20, B50 and B100 fuels) were tested without engine modification. Experiments were performed on a series of engine operating conditions. The particle number size distribution of the engine shows unimodal or bimodal log-normal distribution. With the biodiesel blend ratios increasing, the number of nucleation mode particles increases at all test engine operating conditions and accumulation mode particles decreases at most engine operating conditions.
Technical Paper

Numerical Investigation of Air Purifier Affecting Ultrafine Particle Transport in Vehicle Cabins

2014-04-01
2014-01-0682
Air purifier has been prevalently used in the passenger vehicle cabins to reduce in-cabin UltraFine Particle (UFP) concentration. In this study, Computational Fluid Dynamics (CFD) was applied to simulate the in-cabin UFP transport and distribution under different ventilation modes with different characteristics of the air purifier. Ventilation settings, air purifier settings, and air purifier location were identified as the important factors determining the in-cabin UFP distribution and transport. Downward ventilation airflow direction and smaller ventilation air velocity can be considered by the drivers for a lower in-cabin UFP concentration. Upward airflow direction from the air purifier's inlet and larger air velocity were recommended since it led up to 50% in-cabin UFP reduction. Air purifier installed at middle ceiling of the cabin develops the most efficient airflow for UFP removal.
X