Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

A MPC based Cooperated Control Strategy for Enhanced Agility and Stability of Four-Wheel Steering and Drive Electric Vehicles

2024-04-09
2024-01-2768
Multiple actuators equipped in electric vehicles, such as four- wheel steering (4WS) and four-wheel drive (4WD), provide more degrees of freedom for chassis motion control. However, developing independent control strategies for distinct actuator types could result in control conflicts, potentially degrading the vehicle's motion performance. To address this issue, a model predictive control (MPC) based steering-drive cooperated control strategy for enhanced agility and stability of electric vehicles with 4WD and 4WS is proposed in this paper. By designing the control constraints within the MPC framework, the strategy enables single-drive control, single-steering control, and steering-drive cooperative control. In the upper control layer, a linear time-varying MPC (LTV-MPC) is designed to generate optimal additional yaw moment and additional steering angles of front and rear wheels to enhance vehicle agility and lateral stability.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

2023-04-11
2023-01-0921
With the popularity of automated vehicles, the future mixed traffic flow contains automated vehicles with different degrees of intelligence developed by other manufacturers. Therefore, simulating the interaction behavior of automated vehicles with varying levels of intelligence is crucial for testing and evaluating autonomous driving systems. Since the algorithm of traffic vehicles with various intelligence levels is difficult to obtain, it leads to hardships in quantitatively characterizing their interaction behaviors. Therefore, this paper designs a new automated vehicle test platform to solve the problem. The intelligent vehicle testbed with multiple personalized in-vehicle control units in the loop consists of three parts: 1. Multiple controllers in the loop to simulate the behavior of traffic vehicles;2. The central console applies digital twin technology to share the same traffic scenario between the tested vehicle and the traffic vehicle, creating a mixed traffic flow. 3.
Technical Paper

A Progress Review on Gas Purge for Enhancing Cold Start Performance in PEM Fuel Cell

2018-04-03
2018-01-1312
Cold start capability is one of remaining major challenges in realizing PEMFC (Proton Exchange Membrane Fuel Cell) technology for automotive applications. Gas purge is a common and integral shutdown procedure of a PEMFC automotive in subzero temperature. A dryer membrane electrode assembly (MEA) can store more water before it gets saturated and ice starts to penetrate in the open pores of porous media, thus enhancing cold start capability of a PEMFC. Therefore, gas purge is always performed prior to fuel cell shutdown to minimize residual water in a PEMFC. In the hope of improving effectiveness of purge in a PEMFC vehicle, two important purge parameters are evaluated including purge time and energy requirement. In practice, an optimized gas purge protocol should be developed with minimal parasitic energy, short purge duration and no degradation of components. To conclude, the cold start capability and performance can be consolidated by proper design of gas purge strategies.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Journal Article

Active Noise Equalization of Vehicle Low Frequency Interior Distraction Level and its Optimization

2016-04-05
2016-01-1303
On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
Technical Paper

Adaptive Sliding Mode Kalman Observer for the Estimation of Vehicle Fuel Cell Humidity

2022-03-29
2022-01-0690
The efficiency and durability of fuel cells are affected by internal water content. Therefore, the active control of humidity is of great significance for vehicle fuel cells, especially for self-humidifying fuel cell systems. To realize fuel cell internal humidity active control, it is necessary to collect the humidity information of stack in real time, so as to carry out feedback control. However, humidity sensor has the characteristics of high cost and low durability, so it is more practical to get the feedback value of humidity by using state estimation method for high-power commercial fuel cell system such as vehicle fuel cell. However, humidity estimation is often affected by other physical or chemical dynamic processes, such as oxygen transportation and response process of electrical appliances. In order to weaken the influence of other physical or chemical dynamic processes on humidity estimation, this paper proposes an adaptive sliding mode Kalman observer (ASMK) algorithm.
Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

An Experimental Study of the Yielding Locus of a TRIP780 Steel Sheet Using a Biaxial Tensile Test

2015-04-14
2015-01-0584
The yield locus of a cold-rolled transformation-induced plasticity (TRIP780) steel sheet was investigated using a biaxial tensile test on a cruciform specimen. The effect of the key dimensions of the cruciform specimen on the calculation error and stress inhomogeneity was analyzed in detail using an orthogonal test combined with a finite element analysis. Scanning electron metallography (SEM) observations of the TRIP780 steel were performed. The yield curve of the TRIP780 steel was also calculated using the Von Mises, Hill '48, Hill '93, Barlat '89, Gotoh and Hosford yield criteria. The experimental results indicate that none of the selected yield criteria completely agree with the experimental curve. The Hill '48 and Hosford yield criteria have the largest error while the Hill '93 and Gotoh yield criteria have the smallest error.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
Technical Paper

Analysis of Steering Model for Emergency Lane Change Based on the China Naturalistic Driving Data

2017-03-28
2017-01-1399
A driver steering model for emergency lane change based on the China naturalistic driving data is proposed in this paper. The steering characteristic of three phases is analyzed. Using the steering primitive fitting by Gaussian function, the steering behaviors in collision avoidance and lateral movement phases can be described, and the stabilization steering principle of yaw rate null is found. Based on the steering characteristic, the near and far aim point used in steering phases is analyzed. Using the near and far aim point correction model, a driver steering model for emergency lane change is established. The research results show that the driver emergency steering model proposed in this paper performs well when explaining realistic steering behavior, and this model can be used in developing the ADAS system.
Technical Paper

Analysis under Vehicle-Pedalcyclist Risk Scenario Based on Comparison between Real Accident and Naturalistic Driving Data

2018-04-03
2018-01-1048
This paper constructs the Accident Crash Scenarios(ACSs) classification system based on the traffic accident data collected by the traffic management department in a Chinses city from 2013 to 2015. The classification system selects four influenced variables on the basis of Critical Driving Scenarios(CDSs) in Naturalistic Driving Data. The proportions of each variable are analyzed, and all ACSs are divided into 48 scenarios. The highest proportion of nine ACSs are extracted from all 10596 ACSs, and the result shows the ACSs involved Car-Pedalcyclist occupy the top four scenarios, and the scenarios involved intersection situations are worth attention. Pedalcyclists include bicyclists, motorcyclists, tri-cyclists and electric bicyclists. Multivariate Logistic Regression(MLR) analysis is then used to study the ACSs involved the type of Car-Pedalcyclist.
Technical Paper

Anode Pressure Control with Fuzzy Compensator in PEMFC System

2021-04-06
2021-01-0121
Hydrogen safety is of great importance in proton exchange membrane fuel cell (PEMFC) systems. Anode pressure control has become a focus point in recent years. The differential pressure between anode and cathode in PEMFC system needs to be carefully controlled under a suitable threshold. In practice, the anode pressure is usually controlled about 20–30kPa higher than the cathode pressure to minimize nitrogen crossover and improve cell stability. High differential pressure could lead to irreversible damage in proton exchange membrane. PID control was the dominant method to control the anode pressure in the past. However, the anode pressure’s fluctuation when hydrogen mass flow suddenly changes is a long-term challenge. As the requirements of control precision are increasingly high, the traditional PID control needs to be improved. Several new control algorithms are presented in recent researches, however, mostly are theoretical and experimental.
Technical Paper

Application of the Vortex Identification Algorithms in the Study of the Shear Layer in A 3/4 Open Jet Automotive Wind Tunnel

2018-04-03
2018-01-0746
By means of particle image velocimetry(PIV) measurements, this paper uses vortex identification algorithms to find and analyze the coherent structures in the shear layer region of a 1:15 scaled 3/4 open jet automotive wind tunnel with a high Reynolds number(about 106), referring to SAWTC’s AAWT. The proper orthogonal decomposition(POD) is used to process the PIV experimental data to reconstruct the velocity fields. Based on the vortex identification functions, the locations of the center, the rotation direction and the radius of vortex can be computed. Furthermore, this paper uses the statistical method to study the regularities of distribution of these vortexes in a two-dimensional plane, and identify the vortex pairing process in the shear layer region. This paper also chooses different vortex identification algorithms to find the most accurate and suitable algorithms.
Technical Paper

Assessing and Characterizing the Effect of Altitude on Fuel Economy, Particle Number and Gaseous Emissions Performance of Gasoline Vehicles under Real Driving

2023-04-11
2023-01-0381
High altitudes have a significant effect on the real driving emissions (RDE) of vehicles due to lower pressure and insufficient oxygen concentration. In addition, type approval tests for light-duty vehicles are usually conducted at altitudes below 1000 m. In order to investigate the influence of high altitude on vehicles fuel economy and emissions, RDE tests procedure had been introduced in the China VI emission regulations. In this study, the effect of altitude on fuel economy and real road emissions of three light-duty gasoline vehicles was investigated. The results indicated that for vehicles fuel economy, fuel consumption (L/100 km) for the tested vehicles decreased while the mean exhaust temperature increased with an increase in altitudes. Compared to near sea level, the fuel consumption (L/100 km) of the tested vehicle was reduced by up to 23.28%.
Technical Paper

Auto-ignition Characteristics of Lubricant Droplets under Hot Co-Flow Atmosphere

2018-09-10
2018-01-1807
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure.
X