Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Data-Driven Multi-Type and Multi-Level Fault Diagnosis of Proton Exchange Membrane Fuel Cell Systems Using Artificial Intelligence Algorithms

2022-03-29
2022-01-0693
To improve the durability of Proton-exchange membrane fuel cell (PEMFC) in actual transportation application scenario, the research on fault diagnosis of PEMFC is receiving extensive attention. With the development of artificial intelligence, performing fault diagnosis with the massive sampling data of the fuel cell system has become a popular research topic. But few people have successfully verified the diagnosis performance of these artificial intelligence algorithms on a real high power on-board PEMFC system. Therefore, we intend to make a step forward with these data-driven artificial intelligence algorithms. We applied four data-driven artificial intelligence algorithms to diagnose three common faults of PEMFC (each fault type has two severity levels, slight and severe). AVL CRUISE M was firstly applied for generation of simulation fault dataset to speed up the algorithm screening process. Based on the dataset, these algorithms are trained and optimized.
Technical Paper

Genetic Algorithm-Based Parameter Optimization of Energy Management Strategy and Its Analysis for Fuel Cell Hybrid Electric Vehicles

2019-04-02
2019-01-0358
Fuel cell hybrid electric vehicles (FCHEVs) composed of fuel cells and batteries can improve the dynamic response and durability of vehicle propulsion. In addition, braking energy can be recovered by batteries. The energy management strategy (EMS) for distributing the requested power through different types of energy sources plays an important role in FCHEVs. Reasonable power split not only improves vehicle performance but also enhances fuel economy. In this paper, considering the power tracking control strategy which is widely adopted in Advanced Vehicle Simulator (ADVISOR), a constrained nonlinear programming parameter optimization model is established for minimizing fuel consumption. The principal parameters of power tracking control strategy are set as the optimized variables, with the dynamic performance index of FCHEVs being defined as the constraint condition. Then, the genetic algorithm (GA) is applied in the control strategy design for solving the optimization problem.
Technical Paper

Multi-Stack Fuel Cell System Stacks Allocation Optimization Based on Genetic Algorithms

2022-03-29
2022-01-0689
High-powered and modularity is the trend for fuel cell systems. Similar to the evolution from single-cylinder to multi-cylinder in conventional internal combustion engines, fuel cell systems shall also follow this developing process. Compared to single-stack fuel cell systems, multi-stack fuel cell systems (MFCS) can enhance the system maximum output power and improve the system performance. To achieve modular design and improve the performance of high-powered MFCS, a MFCS stacks allocation optimization algorithm based on genetic algorithms is proposed in this paper. First, remaining useful life (RUL) and efficiency are choosing as an integrated optimization index, the decision model for MFCS stacks allocation is developed. Then, a heavy-duty commercial vehicle was used as an example to match the vehicle power train parameters. The genetic algorithm is used to solve the global optimal stacks allocation scheme for the vehicle in a specific application scenario.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
X