Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
Technical Paper

A MPC based Cooperated Control Strategy for Enhanced Agility and Stability of Four-Wheel Steering and Drive Electric Vehicles

2024-04-09
2024-01-2768
Multiple actuators equipped in electric vehicles, such as four- wheel steering (4WS) and four-wheel drive (4WD), provide more degrees of freedom for chassis motion control. However, developing independent control strategies for distinct actuator types could result in control conflicts, potentially degrading the vehicle's motion performance. To address this issue, a model predictive control (MPC) based steering-drive cooperated control strategy for enhanced agility and stability of electric vehicles with 4WD and 4WS is proposed in this paper. By designing the control constraints within the MPC framework, the strategy enables single-drive control, single-steering control, and steering-drive cooperative control. In the upper control layer, a linear time-varying MPC (LTV-MPC) is designed to generate optimal additional yaw moment and additional steering angles of front and rear wheels to enhance vehicle agility and lateral stability.
Technical Paper

A Method for Building Vehicle Trajectory Data Sets Based on Drone Videos

2023-04-11
2023-01-0714
The research and development of data-driven highly automated driving system components such as trajectory prediction, motion planning, driving test scenario generation, and safety validation all require large amounts of naturalistic vehicle trajectory data. Therefore, a variety of data collection methods have emerged to meet the growing demand. Among these, camera-equipped drones are gaining more and more attention because of their obvious advantages. Specifically, compared to others, drones have a wider field of bird's eye view, which is less likely to be blocked, and they could collect more complete and natural vehicle trajectory data. Besides, they are not easily observed by traffic participants and ensure that the human driver behavior data collected is realistic and natural. In this paper, we present a complete vehicle trajectory data extraction framework based on aerial videos. It consists of three parts: 1) objects detection, 2) data association, and 3) data cleaning.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

Accurate Modeling of PMSM Considering Orthotropic Material Parameters of Stator System for Vibroacoustic Prediction

2022-03-29
2022-01-0725
An accurate finite element (FE) model is the basis for the numerical prediction of vibration and noise of permanent magnet synchronous motors (PMSMs). This paper provides an equivalent modeling method of PMSMs considering the orthotropic material parameters of the stator system. First, a theoretical analysis of the influence of orthotropic material parameters on modal characteristics is implemented. Subsequently, the influence of orthotropic material parameters on the modal frequency of the stator is analyzed through the FE method. Then, the modal parameters of the stator core and the stator assembly are obtained by modal tests. According to the equivalent FE model and modal parameters, the orthotropic material parameters of the stator system are acquired. Moreover, to save the calculation time and simplify the modal identification process, the influence of windings is taken into account through additional mass and additional stiffness during the modeling process.
Journal Article

Acoustic Characteristics Prediction and Optimization of Wheel Resonators with Arbitrary Section

2020-04-14
2020-01-0917
Tire cavity noise of pure electric vehicles is particularly prominent due to the absence of engine noise, which are usually eliminated by adding Helmholtz resonators with arbitrary transversal section to the wheel rims. This paper provides theoretical basis for accurately predicting and effectively improving acoustic performance of wheel resonators. A hybrid finite element method is developed to extract the transversal wavenumbers and eigenvectors, and the mode-matching scheme is employed to determine the transmission loss of the Helmholtz resonator. Based on the accuracy validation of this method, the matching design of the wheel resonators and the optimization method of tire cavity noise are studied. The identification method of the tire cavity resonance frequency is developed through the acoustic modal test. A scientific transmission loss target curve and fitness function are defined according to the noise characteristics.
Technical Paper

An ADAS-Oriented Virtual EPS Platform Based on the Force Feedback Actuator of the Steer-by-Wire System

2016-09-14
2016-01-1905
Electric Power Steering (EPS) is the actuator of several lateral-dynamic-related Advanced Driver Assistance Systems (ADAS). A driving simulator with EPS will be much helpful for the ADAS development. However, if a real EPS is used in the driving simulator, it is quite difficult to realize the road reaction force accurately and responsively. To overcome this weakness, a virtual EPS platform is established. The virtual EPS platform contains two parts: one is the vehicle and EPS model, the other is the force feedback actuator (FFA) of the Steer-by-Wire (SBW) system. The FFA is an interface between the driver and the EPS/vehicle model. The reactive torque of the FFA is obtained based on the models. Meanwhile, the input of the EPS model is the steering angle of the FFA. Comparing to a real EPS, the virtual EPS platform has a problem of instability because of the actuator lag of the FFA. Therefore, a damping control method is applied to make the system stable.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

An Outer Loop of Trajectory and an Inner Loop of Steering Angle for Trajectory Tracking Control of Automatic Lane Change System

2019-11-04
2019-01-5029
Automatic Lane Change (ALC) function is an important step to promote the currently popular Advanced Driver Assistance Systems (ADAS) within a single lane. The key issue for ALC is accurate steering angle and trajectory tracking during the lane changing process. In this paper, an MPC controller with a receding horizon is designed to track the desired trajectory. During the tracking process, other objectives such as safety and smoothness are considered. Considering of the practical mechanism and parameter uncertainties, an SMC controller is designed to track the target steering angle. For validation, a Hardware-in-the-Loop (HIL) experiment platform is established, and experiments of different control algorithms under different conditions are carried out successively. Comparisons of the experiment results of MPC+SMC and PID+SMC schemes indicate that both the trajectory error and the steering angle error of the former combination are smaller.
Technical Paper

Analysis of Vibration Characteristics of High-Speed Reducer for Pure Electric Vehicles

2024-04-09
2024-01-2721
In view of the vibration and noise problem in the electric drive system, the vibration characteristics of its high-speed reducer are analyzed and studied. Through the vibration and noise bench test of the integrated electric drive system, the contribution of high-speed reducer gear meshing order vibration noise to the vibration noise of the electric drive system was studied. A rigid-flexible coupling dynamic model of high-speed reducer was established, and the accuracy of the model was verified. At the same time, based on the gear modification theory, the effects of different gear modification parameters on the peak-to-peak value of high-speed reducer gear transmission error, the amplitude of each order harmonic of the transmission error, and the vibration acceleration response of the high-speed reducer shell surface were studied. Genetic algorithm was used to optimize the gear modification parameters, and the optimization method was simulated and verified.
Technical Paper

Analysis of the Correlation between Driver's Visual Features and Driver Intention

2019-04-02
2019-01-1229
Driver behaviors provide abundant information and feedback for future Advanced Driver Assistance Systems (ADAS). Driver’s eye and head may present some typical movement patterns before executing driving maneuvers. It is possible to use driver’s head and eye movement information for predicting driver intention. Therefore, to determine the most important features related to driver intention has attracted widespread research interests. In this paper, a method to analyze the correlation between driver’s visual features and driver intention is proposed, aiming to determine the most representative features for driver intention prediction. Firstly, naturalistic driving experiment is conducted to collect driver’s videos during executing lane keeping and lane change maneuvers. Then, driver’s head and face visual features are extracted from those videos. By using boxplot and independent samples T-test, features which have significant correlation with driver intention are found.
Technical Paper

Analysis of the Driver’s Breaking Response in the Safety Cut-in Scenario Based on Naturalistic Driving

2019-11-04
2019-01-5053
For the personification of automotive vehicle function performance under common traffic scenarios, analysis of human driver behavior is necessary. Based on China Field Operational Test (China-FOT) database of China Natural Driving Study project, this paper studies the driver's response in the common cut-in scenario. A total of 266 cut-in cases are selected by manual interception of driving recorder video. The relevant traffic environment characteristics are also extracted from video, including light conditions, road conditions, scale and lateral position of cut-in vehicle, etc. Dynamic information is decoded form CAN, such as speed, acceleration and so on. Then image processing results, such as relative speed and distance of cut-in and subject vehicles, are calculated. Statistical results based on above information show the response type and distribution of human driver: the behavior of keeping lane is 96.24%, in which the ratio of braking response is 51.13%.
Technical Paper

Analysis on Fatigue Load and Life about the Frame of a Low-Speed Electric Vehicle Based on Multi-Body Dynamics

2017-03-28
2017-01-0334
The frame of a low-speed electric vehicle was treated as the research object in the paper. The fatigue load of the frame was analyzed with multi-body dynamics method and the fatigue life of frame was analyzed with the nominal stress method. Firstly, the multi-body dynamics model of the vehicle was established and the multi-body dynamics simulation was carried out to simulate the condition where the vehicle used to travel. The fatigue load history of the frame was obtained from the simulation. Secondly, the amplitude-frequency characteristic of the fatigue load was analyzed. The frequency of the fatigue load mainly focused on 0~20HZ from the analysis. Thirdly, the modal of frame was analyzed. As the frequency of the fatigue load was less than the natural frequency of the frame, the quasi-static method was selected to calculate the stress history of the frame. Next, the fatigue life of the frame was analyzed based on S-N curve.
Technical Paper

Bi-Directional Equalization System for Li-Ion Battery Pack Based on Fly-back Transformer

2018-04-03
2018-01-0442
For balancing Li-ion battery cells connected in series and effectively improving the consistency of the cells, a bi-directional equalization system based on fly-back transformer is proposed. Unlike the passive equalization technology using a resistor or active equalization with expensive DC-DC converter for the balancing among the cells, this equalization circuit consists of the fly-back transformer and RCD circuit, which can easily and cheaply realize the energy transfer between the whole battery module and the cells, and thus achieving bidirectional equalization. In this system, both the primary side and the secondary side of multi-winding transformer are connected to a MOSFET. All MOSFETs are controlled by the PWM signal. The control timing and duty ratio of the PWM control signal are determined through the simulation analysis. Meanwhile, an RCD circuit is applied at the primary side of multi-winding transformer for buffering the peak voltage caused by leakage inductance.
X