Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

77 GHz Radar Based Multi-Target Tracking Algorithm on Expressway Condition

2022-12-16
2022-01-7129
Multi-Target tracking is a central aspect of modeling the surrounding environment of autonomous vehicles. Automotive millimeter-wave radar is a necessary component in the autonomous driving system. One of the biggest advantages of radar is it measures the velocity directly. Another big advantage is that the radar is less influenced by environmental conditions. It can work day and night, in rainy or snowy conditions. In the expressway scenario, the forward-looking radar can generate multiple objects, to properly track the leading vehicle or neighbor-lane vehicle, a multi-target tracking algorithm is required. How to associate the track and the measurement or data association is an important question in a multi-target tracking system. This paper applies the nearest-neighbor method to solve the data association problem and uses an extended Kalman filter to update the state of the track.
Technical Paper

A Comparative Study of Different Wheel Rotating Simulation Methods in Automotive Aerodynamics

2018-04-03
2018-01-0728
Wheel Aerodynamics is an important part of vehicle aerodynamics. The wheels can notably influence the total aerodynamic drag, lift and ventilation drag of vehicles. In order to simulate the real on-road condition of driving cars, the moving ground and wheel rotation is of major importance in CFD. However, the wheel rotation condition is difficult to be represented exactly, so this is still a critical topic which needs to be worked on. In this paper, a study, which focuses on two types of cars: a fastback sedan and a notchback DrivAer, is conducted. Comparing three different wheel rotating simulation methods: steady Moving wall, MRF and unsteady Sliding Mesh, the effects of different methods for the numerical simulation of vehicle aerodynamics are revealed. Discrepancies of aerodynamic forces between the methods are discussed as well as the flow field, and the simulation results are also compared with published experimental data for validation.
Technical Paper

A Comparative Study of Fuel Cell Prediction Models Based on Relevance Vector Machines with Different Kernel Functions

2021-04-06
2021-01-0728
Fuel cell reactors, as the core components of fuel cell vehicles, have a short life problem that has always limited the development of fuel cell vehicles. The life attenuation curve of fuel cell shows nonlinear characteristics, and there is no model that can accurately predict its effect. This paper is based on the experimental data of the vehicle fuel cell reactor, which is derived from the 600 h durability test run by a 4 kW fuel cell reactor. The relevance vector machine, as a Bayes processing method that supports vector machine, is a data-driven method based on kernel functions. The regression model is established by the relevance vector machine, and the super-parameters are found by genetic algorithm, because the kernel function strongly affects the nonlinearity of the curve, and the decay curve of fuel cell reactor performance is predicted according to four different kernel functions.
Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

2024-04-09
2024-01-2015
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
Technical Paper

A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

2023-04-11
2023-01-0921
With the popularity of automated vehicles, the future mixed traffic flow contains automated vehicles with different degrees of intelligence developed by other manufacturers. Therefore, simulating the interaction behavior of automated vehicles with varying levels of intelligence is crucial for testing and evaluating autonomous driving systems. Since the algorithm of traffic vehicles with various intelligence levels is difficult to obtain, it leads to hardships in quantitatively characterizing their interaction behaviors. Therefore, this paper designs a new automated vehicle test platform to solve the problem. The intelligent vehicle testbed with multiple personalized in-vehicle control units in the loop consists of three parts: 1. Multiple controllers in the loop to simulate the behavior of traffic vehicles;2. The central console applies digital twin technology to share the same traffic scenario between the tested vehicle and the traffic vehicle, creating a mixed traffic flow. 3.
Journal Article

A Potential Field Based Lateral Planning Method for Autonomous Vehicles

2016-09-14
2016-01-1874
As one of the key technologies in autonomous driving, the lateral planning module guides the lateral movement during the driving process. An integrated lateral planning module should consider the non-holonomic constraints of a vehicle, the optimization of the generated trajectory and the applicability to various scenarios. However, the current lateral planning methods can only meet parts of these requirements. In order to satisfy all the performance requirements above, a novel Potential Field (PF) based lateral planning method is proposed in this paper. Firstly, a PF model is built to describe the potential risk of the traffic entities, including the obstacles, road boundaries and lines. The potential fields of these traffic entities are determined by their properties and the traffic regulations. Secondly, the planning algorithm is presented, which comprises three modules: state prediction, state search and trajectory generation.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
Journal Article

A Study on the Bench Test of Friction-Induced Hot Spots in Disc Brake

2015-09-27
2015-01-2694
During light to moderate braking at high speed, the local high temperature phenomenon can be observed on the brake disc surfaces, known as hot spots. The occurrence of hot spots will lead to negative effects such as brake performance fade, thermal judder and local wear, which seriously affect the performance of vehicle NVH. In this paper, based on the bench test of a ventilated disc brake, the basic characteristics of hot spots is obtained and the evolution process of temperature field and disc deformation is analyzed in detail. In temperature field, hot bands appear first and grow, migrate from inner and outer radius to the middle, with the growing temperature fluctuation and finally hot spots appear in the middle radius of the brake disc. The stable SRO waviness forms much earlier than the temperature fluctuation. In the stop brake studied in this paper, the SRO waviness stabilizes in main 7 order state which is lower than the final hot spot order.
Journal Article

Acoustic Characteristics Prediction and Optimization of Wheel Resonators with Arbitrary Section

2020-04-14
2020-01-0917
Tire cavity noise of pure electric vehicles is particularly prominent due to the absence of engine noise, which are usually eliminated by adding Helmholtz resonators with arbitrary transversal section to the wheel rims. This paper provides theoretical basis for accurately predicting and effectively improving acoustic performance of wheel resonators. A hybrid finite element method is developed to extract the transversal wavenumbers and eigenvectors, and the mode-matching scheme is employed to determine the transmission loss of the Helmholtz resonator. Based on the accuracy validation of this method, the matching design of the wheel resonators and the optimization method of tire cavity noise are studied. The identification method of the tire cavity resonance frequency is developed through the acoustic modal test. A scientific transmission loss target curve and fitness function are defined according to the noise characteristics.
Journal Article

Active Noise Equalization of Vehicle Low Frequency Interior Distraction Level and its Optimization

2016-04-05
2016-01-1303
On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
Technical Paper

Adaptive Cascade Optimum Braking Control Based on a Novel Mechatronic Booster

2017-09-17
2017-01-2514
BBW (Brake-by-wire) can increase the electric and hybrid vehicles performance and safety. This paper proposes a novel mechatronic booster system, which includes APS (active power source), PFE (pedal feel emulator), ECU (electronic control unit). The system is easily disturbed when the system parameters and the outside conditions change. The system performance is weakened. The cascade control technique can be used to solve the problem. This paper develops an adaptive cascade optimum control (ACOC) algorithm based on the novel mechatronic booster system. The system is divided into main loop and servo loop, both of them are closed-loop system. The servo-loop system can eliminate the disturbance which exists in the servo loop. So the robustness of the cascade control system is improved than which of the general closed-loop control system. Different control object is respectively chosen. The control-oriented mathematical model is designed.
Technical Paper

Adaptive Sliding Mode Kalman Observer for the Estimation of Vehicle Fuel Cell Humidity

2022-03-29
2022-01-0690
The efficiency and durability of fuel cells are affected by internal water content. Therefore, the active control of humidity is of great significance for vehicle fuel cells, especially for self-humidifying fuel cell systems. To realize fuel cell internal humidity active control, it is necessary to collect the humidity information of stack in real time, so as to carry out feedback control. However, humidity sensor has the characteristics of high cost and low durability, so it is more practical to get the feedback value of humidity by using state estimation method for high-power commercial fuel cell system such as vehicle fuel cell. However, humidity estimation is often affected by other physical or chemical dynamic processes, such as oxygen transportation and response process of electrical appliances. In order to weaken the influence of other physical or chemical dynamic processes on humidity estimation, this paper proposes an adaptive sliding mode Kalman observer (ASMK) algorithm.
Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Technical Paper

Adjoint-Based Model Tuning and Machine Learning Strategy for Turbulence Model Improvement

2022-03-29
2022-01-0899
As turbulence modeling has become an indispensable approach to perform flow simulation in a wide range of industrial applications, how to enhance the prediction accuracy has gained increasing attention during the past years. Of all the turbulence models, RANS is the most common choice for many OEMs due to its short turn-around time and strong robustness. However, the default setting of RANS is usually benchmarked through classical and well-studied engineering examples, not always suitable for resolving complex flows in specific circumstances. Many previous researches have suggested a small tuning in turbulence model coefficients could achieve higher accuracy on a variety of flow scenarios. Instead of adjusting parameters by trial and error from experience, this paper introduced a new data-driven method of turbulence model recalibration using adjoint solver, based on Generalized k-ω (GEKO) model, one variant of RANS.
Journal Article

Aerodynamic Performance Modeling of the Centrifugal Compressor and Stability Analysis of the Compression System for Fuel Cell Vehicles

2021-04-06
2021-01-0733
The centrifugal compressor is one of the most commonly used air compressors for fuel cell air supply systems, and it has the small volume, high pressure ratio and low noise. However, surge in a centrifugal compressor severely limits its stable flow range. In this paper, a mathematical model of the compressor aerodynamic performance based on the energy transfer method was established, some parameters of model were identified by experimental data, and the model was validated through experiments. Then the dynamic model of the compression system was derived based on the compressor model and the Moore-Greitzer model. The stability analysis of the compression system was conducted, and it was strictly proved that when the compression system is unstable, there is the limit cycle in this nonlinear system, namely the surge cycle. Furthermore, the simulation of the compression system was conducted and the instability condition of the compression system was presented.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
X