Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

A Study on Optimization of the Ride Comfort of the Sliding Door Based on Rigid-Flexible Coupling Multi-Body Model

2017-03-28
2017-01-0417
To solve the problem of serious roller wear and improve the smoothness of the sliding door motion process, the rigid-flexible coupling multi-body model of the vehicle sliding door was built in ADAMS. Force boundary conditions of the model were determined to meet the speed requirement of monitoring point and time requirement of door opening-closing process according to the bench test specification. The results of dynamic simulation agreed well with that of test so the practicability and credibility of the model was verified. In the optimization of the ride comfort of the sliding door, two different schemes were proposed. The one was to optimize the position of hinge pivots and the other was to optimize the structural parameters of the middle guide. The impact load of lead roller on middle guide, the curvature of the motion trajectory and angular acceleration of the sliding door centroid were taken as optimization objectives.
Journal Article

A Study on the Bench Test of Friction-Induced Hot Spots in Disc Brake

2015-09-27
2015-01-2694
During light to moderate braking at high speed, the local high temperature phenomenon can be observed on the brake disc surfaces, known as hot spots. The occurrence of hot spots will lead to negative effects such as brake performance fade, thermal judder and local wear, which seriously affect the performance of vehicle NVH. In this paper, based on the bench test of a ventilated disc brake, the basic characteristics of hot spots is obtained and the evolution process of temperature field and disc deformation is analyzed in detail. In temperature field, hot bands appear first and grow, migrate from inner and outer radius to the middle, with the growing temperature fluctuation and finally hot spots appear in the middle radius of the brake disc. The stable SRO waviness forms much earlier than the temperature fluctuation. In the stop brake studied in this paper, the SRO waviness stabilizes in main 7 order state which is lower than the final hot spot order.
Technical Paper

Accurate Modeling of PMSM Considering Orthotropic Material Parameters of Stator System for Vibroacoustic Prediction

2022-03-29
2022-01-0725
An accurate finite element (FE) model is the basis for the numerical prediction of vibration and noise of permanent magnet synchronous motors (PMSMs). This paper provides an equivalent modeling method of PMSMs considering the orthotropic material parameters of the stator system. First, a theoretical analysis of the influence of orthotropic material parameters on modal characteristics is implemented. Subsequently, the influence of orthotropic material parameters on the modal frequency of the stator is analyzed through the FE method. Then, the modal parameters of the stator core and the stator assembly are obtained by modal tests. According to the equivalent FE model and modal parameters, the orthotropic material parameters of the stator system are acquired. Moreover, to save the calculation time and simplify the modal identification process, the influence of windings is taken into account through additional mass and additional stiffness during the modeling process.
Technical Paper

Active Plasma Probing for Lean Burn Flame Detection

2023-04-11
2023-01-0293
Combustion diagnostics of highly diluted mixtures are essential for the estimation of the combustion quality, and control of combustion timing in advanced combustion systems. In this paper, a novel fast response flame detection technique based on active plasma is introduced and investigated. Different from the conventional ion current sensing used in internal combustion engines, a separate electrode gap is used in the detecting probing. Further, the detecting voltage across the electrode gap is modulated actively using a multi-coil system to be slightly below the breakdown threshold before flame arrival. Once the flame front arrives at the probe, the ions on the flame front tend to decrease the breakdown voltage threshold and trigger a breakdown event. Simultaneous electrical and optical measurements are employed to investigate the flame detecting efficacy via active plasma probing under both quiescent and flow conditions.
Technical Paper

An Experimental Study of the Yielding Locus of a TRIP780 Steel Sheet Using a Biaxial Tensile Test

2015-04-14
2015-01-0584
The yield locus of a cold-rolled transformation-induced plasticity (TRIP780) steel sheet was investigated using a biaxial tensile test on a cruciform specimen. The effect of the key dimensions of the cruciform specimen on the calculation error and stress inhomogeneity was analyzed in detail using an orthogonal test combined with a finite element analysis. Scanning electron metallography (SEM) observations of the TRIP780 steel were performed. The yield curve of the TRIP780 steel was also calculated using the Von Mises, Hill '48, Hill '93, Barlat '89, Gotoh and Hosford yield criteria. The experimental results indicate that none of the selected yield criteria completely agree with the experimental curve. The Hill '48 and Hosford yield criteria have the largest error while the Hill '93 and Gotoh yield criteria have the smallest error.
Technical Paper

An Online Fault Detection and Isolation Method for Permanent Magnet Synchronous Machine

2018-04-03
2018-01-0451
An online fault detection and isolation (FDI) method for several common sensor faults and even demagnetization of PMSM is proposed by combining model-based and signal analysis technology. To begin with, the field reconstruction method (FRM) of PMSM is employed to obtain the flux residuals which are used as the criterion of fault detection. Then, the flux residuals are transformed by multi sequence harmonic synchronous rotating transformation and inputted into low pass filters (LPFs) in order to obtain the DC components. Last, offset and gain faults of the two phase current sensors, offset fault of the rotor angle sensor and permanent magnet (PM) demagnetization can be isolated by comparing the DC components and preset thresholds. The detection and isolation strategy of PMSM is validated by motor controller hardware in motor bench tests.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Analysis on Fatigue Load and Life about the Frame of a Low-Speed Electric Vehicle Based on Multi-Body Dynamics

2017-03-28
2017-01-0334
The frame of a low-speed electric vehicle was treated as the research object in the paper. The fatigue load of the frame was analyzed with multi-body dynamics method and the fatigue life of frame was analyzed with the nominal stress method. Firstly, the multi-body dynamics model of the vehicle was established and the multi-body dynamics simulation was carried out to simulate the condition where the vehicle used to travel. The fatigue load history of the frame was obtained from the simulation. Secondly, the amplitude-frequency characteristic of the fatigue load was analyzed. The frequency of the fatigue load mainly focused on 0~20HZ from the analysis. Thirdly, the modal of frame was analyzed. As the frequency of the fatigue load was less than the natural frequency of the frame, the quasi-static method was selected to calculate the stress history of the frame. Next, the fatigue life of the frame was analyzed based on S-N curve.
Technical Paper

Analysis on Irreversible Demagnetization Condition of Linear Oscillatory Actuator with Moving Magnets

2022-03-29
2022-01-0281
In this paper, a linear oscillatory actuator (LOA) with moving magnets used in active engine mount is modeled and theoretically analyzed considering its performance decline at high temperature. Firstly, a finite element model (FEM) of the LOA with moving magnets is established. The actuator force is decomposed to ampere force and cogging force through formation mechanism analysis. By using the FEM, ampere forces and cogging forces of the LOA with moving magnets under different current loads and different mover positions are calculated. The FEM and calculation method are validated by bench level test. The voice coil constant and cogging coefficient at normal temperature are identified, which indicates the actuator force is a linear model related to the current and the mover position.
Journal Article

Analytical Modeling of Open-Circuit Magnetic Field in Permanent Magnet Assisted Synchronous Reluctance Motors Considering Iron Bridge Saturation Effects

2022-03-29
2022-01-0731
Calculating accurately iron bridge saturation effects of the magnetic field, for Permanent Magnet Assisted Synchronous Reluctance Motors (PMASynRMs), remains to be a knotty problem. This paper presents an analytical modeling method to predict open-circuit magnetic field distributions and electromagnetic performances of PMASynRMs, considering iron bridge saturation effects. This analytical modeling method combines the magnetic equivalent circuit method, superposition principle, the solution of the governing Maxwell’s field equations and a complex relative permeance function. A quadruple-layer PMASynRM are remodeled into four surface-inserted permanent magnet synchronous motors (SPMSMs) which have different surface-inserted permanent magnets.
Technical Paper

Anode Pressure Control with Fuzzy Compensator in PEMFC System

2021-04-06
2021-01-0121
Hydrogen safety is of great importance in proton exchange membrane fuel cell (PEMFC) systems. Anode pressure control has become a focus point in recent years. The differential pressure between anode and cathode in PEMFC system needs to be carefully controlled under a suitable threshold. In practice, the anode pressure is usually controlled about 20–30kPa higher than the cathode pressure to minimize nitrogen crossover and improve cell stability. High differential pressure could lead to irreversible damage in proton exchange membrane. PID control was the dominant method to control the anode pressure in the past. However, the anode pressure’s fluctuation when hydrogen mass flow suddenly changes is a long-term challenge. As the requirements of control precision are increasingly high, the traditional PID control needs to be improved. Several new control algorithms are presented in recent researches, however, mostly are theoretical and experimental.
Technical Paper

Catalytic Characteristic and Application Performance of Catalyzed DPFs Coated with Various Content of Precious Metal in China

2017-10-08
2017-01-2379
Recent toxicological and epidemiologic studies have shown that diesel emissions have been a significant toxic air contaminant. Catalyzed DPF (CDPF) not only significantly reduces the PM mass emissions (>90%), but also further promotes carrier self-regeneration and oxidize more harmful gaseous pollutants by the catalyst coated on the carrier. However, some ultrafine particles and potentially harmful gaseous pollutants, such as VOCs species, originally emitted in the vapor-phase at high plume temperature, may penetrate through the CDPF filter. Furthermore, the components and content of catalyst coated on the CDPF could influence the physicochemical properties and toxicity intensity of those escaping ultrafine particles and gaseous pollutants. In this work, (1) we investigated the influence of precious metal content as a variable parameter on the physicochemical properties and catalytic activities of the small CDPF samples.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Characteristics of Transient NO Emissions Based on the First Firing Cycle Analysis of Cold-Start

2006-04-03
2006-01-1050
The First Firing Cycle (FFC) is very important at cold-start. Misfiring of the first firing cycle can lead to significant HC emissions and affect the subsequent cycles. This paper presents an investigation of characteristics of transient NO emissions in a small LPG SI engine with electronic gaseous injection system. To determine the optimal excess air coefficient ( λ=[A/F]/[A/F]stoic) of the first firing cycle, the emission of instantaneous NO was proposed as a useful criterion to judge if the combustion is occurred or not. A fast response NO detector- Cambustion fNOx400, based on the chemiluminescence's (CLD) method, has been employed to measure continuous, transient emissions of NO during the first firing cycle in the exhaust port of the engine. At the same time, the transient cylinder pressure, instantaneous crankshaft speed of the engine and engine-out HC emissions were measured and recorded.
Technical Paper

Composite Steering Strategy for 4WS-4WD EV Based on Low-Speed Steering Maneuverability

2019-11-04
2019-01-5052
A composite steering control strategy, which combines four-wheel steering (4WS) and differential steering, is proposed in this paper, to optimize steering maneuverability in the conditions where the vehicle speed is below 15 Km/h, mainly for U-turning and parking conditions. A dynamic model is developed for the steering system and the tire system. Taking different steering wheel inputs into consideration, a 4WS control strategy proportional to the front wheel steering angle is quoted to improve the steering maneuverability in the low speed conditions and guarantee the manipulability by controlling the side slip of the vehicle. Based on the 4WS system, this paper explores the possibility of further improving the low-speed maneuverability of the vehicle through differential steering. And the differential steering control strategy is developed, including four hub-motor output modes. A composite steering controller is designed based on the 4WS-4WD electric vehicle platform.
Technical Paper

Compressive and Bending Resistance of the Thin-Walled Hat Section Beam with Strengthened Ridgelines

2021-04-06
2021-01-0293
To overcome some drawbacks of using UHSS (Ultra High Strength Steel) in vehicle weight reduction, like spot weld HAZ (Heat Affected Zone) softening, hard machining and brittleness, a new solution of ultra-high stress strengthening was proposed and applied to the ridgelines of thin-walled structures in this paper. Firstly, stress distribution characteristics, the laws of stress variation and the compressed plate buckling process of the rectangular thin-walled beam under compressive and bending load were analyzed in elastic plastic stage by theory and Finite Element (FE) simulation. Secondly, based on elastic plastic buckling theory of the compressed plate and stress distribution similarity of the buckling process of the thin-walled box structure, three factors influencing the ultimate resistance enhancement of thin-walled hat section beam were found, and the rationality and accuracy of cross section ultimate resistance prediction formulas were also verified by FE simulation.
Technical Paper

Concurrent Optimization of Ply Orientation and Thickness for Carbon Fiber Reinforced Plastic (CFRP) Laminated Engine Hood

2018-04-03
2018-01-1121
Carbon fiber reinforced plastic (CFRP) composites have gained particular interests due to their high specific modulus, high strength, lightweight and resistance to environment. In the automotive industry, numerous studies have been ongoing to replace the metal components with CFRP for the purpose of weight saving. One of the significant benefits of CFRP laminates is the ability of tailoring fiber orientation and ply thickness to meet the acceptable level of structural performance with little waste of material capability. This study focused on the concurrent optimization of ply orientation and thickness for CFRP laminated engine hood, which was based on the gradient-based discrete material and thickness optimization (DMTO) method. Two manufactural constraints, namely contiguity and intermediate void constraints, were taken into account in the optimization problem to reduce the potential risk of cracking matrix of CFRP.
X