Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Technical Paper

Development of Estimation Technique for Flow Induced Vibration on External Rearview Mirror

2003-10-27
2003-01-2815
A technique has been developed that uses unsteady flow simulation to evaluate mirror vibration quantitatively at the drawing stage. Studies made in actual driving tests of the contributions of different inputs to mirror vibration have confirmed that the contribution of fluid force is large, so a visualization of the structure of the external rearview mirror wake was done using PIV. The results made it clear that the vibration imparted to the mirror surface by air flow excites the natural vibration mode of the mirror surface, thereby causing the mirror to vibrate. Mirror vibration performance was evaluated by means of unsteady flow simulation using the moment PSD as a substitute characteristic. (The moment PSD was obtained by a frequency analysis of the changes over time in the moment generated in the mirror surface by the fluid force.) The results obtained through CFD show a high degree of correlation with those obtained in actual driving tests.
Technical Paper

Flow Visualization and Measurement of Torque Converter Stator Blades Using a Laser Sheet Lighting Method and a Laser Doppler Velocimeter

1997-02-24
970680
A new experimental apparatus to visualize and measure the flow in the stator of a torque converter is proposed. A one-sided coaxial shaft constructed of an input shaft and an output shaft provides an open space inside the stator shaft for measurement. Through the window on the stator shaft, the flow in the stator can be directly observed. We also improved the laser sheet lighting method into the blade passage by using a mirror inside the blade. By visualizing the flow with the laser sheet lighting method, we found that the flow around the leading edge has different separation regions along the blade span. Furthermore, by using a laser doppler velocimeter, velocity vectors and turbulence intensities were measured in three stator blades of different thicknesses with the same camber line. The thickness of the stator blades affects the flow patterns.
Technical Paper

Measurement of Air-Fuel Mixture Distribution in a Gasoline Engine Using LIEF Technique

1992-10-01
922356
The laser-induced exciplex fluorescence (LIEF) technique, currently used to observe mixture formation in a diesel engine, has been applied to a spark ignition (SI) engine and a new equivalence ratio calibration technique has been developed in order that two-dimensional measurements of the equivalence ratio may be made in an operating engine. Spectrally separated fluorescent images of liquid and vapor phase fuel distributions were obtained by adding new exciplex-forming dopants to the gasoline fuel. Dual light sheets from an excimer laser were introduced into one of the cylinders of a 4-valve lean-burn engine, and 2-D images of the mixture formation were recorded at pre-set crank angles during the induction and compression strokes by an image-intensified camera equipped with the appropriate filter.
Journal Article

Numerical Simulation for Designing Next Generation TWC System with Detailed Chemistry

2008-06-23
2008-01-1540
A one-dimensional (1-D) micro-kinetic reaction model with considering mass transport inside porous washcoat was developed to promote an effective development of multi-functional catalysts. The validation of this model has been done successfully through the comparison with a set of basic experiments. A numerical simulation study was conducted for the various catalyst configurations of three-way catalysts under Federal Test Procedure (FTP75) condition. It was found that a double layer type had a significant advantage in the total mass emissions, especially in NOx emissions. The reaction mechanisms in these catalysts were numerically clarified from the view point of detailed reaction dynamics. We concluded that the utilization of the numerical simulation with the detailed chemistry was effective for the optimization of catalyst design.
Technical Paper

Objective Evaluation of Exciting Engine Sound in Passenger Compartment During Acceleration

2000-03-06
2000-01-0177
This paper describes an objective evaluation method for the engine sound quality in a car interior during acceleration. Two principal factors, pleasantness and raciness, of the engine sound quality were found with a subjective evaluation test in a laboratory. Psycho-acoustic indexes corresponding to these factors were revealed by investigating the correlation among subjective ratings and acoustic characteristics. The index of raciness was originally proposed for the assessment of sound that makes driving fun when the sound is emphasized. We propose that the design of engine sound is required with consideration of the balance between pleasantness and raciness.
Technical Paper

Quantitative Optical Analysis and Modelling of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions

2018-09-10
2018-01-1728
This study models short circuits and blow-outs of spark channels. The short circuit model assumes that a spark channel is short-circuited between two arbitrary locations when the electric potential difference between the two locations exceeds the voltage which enables electrical insulation breakage in-between. The threshold voltage can be raised by increasing the distance between the two locations and decreasing the discharge current. Discharge current, in this model, represents the influence of both the spread and the number of electrically charged particles, i.e., electrons and positive ions, distributed near the two locations. Meanwhile, the blow-out model assumes that a strong flow diffuses electrons and positive ions in the spark channel, and consequently the discharge blows out.
Technical Paper

Relationship between Localized Spine Deformation and Cervical Vertebral Motions for Low Speed Rear Impacts Using Human Volunteers

1999-09-23
1999-13-0010
It is important to more clearly identify the relationship among the ramping-up motion, straightening of the whole spine, and cervical vertebrae motion in order to clarify minor neck injury mechanism. The aim of the current study is to verify the influence of the change of the spine configuration on human cervical vertebral motion and on head/neck/torso kinematics under low speed rear-end impacts. Seven healthy human volunteers participated in the experiment under the supervision of an ethics committee. Each subject sat on a seat mounted on a sled that glided backward on rails and simulated actual car impact acceleration. Impact speeds (4, 6, and 8 km/h), and seat stiffness (rigid and soft) without headrest were selected. During the experiment, the change of the spine configuration (measured by a newly developed spine deformation sensor with 33 paired set strain gauges and placed on the skin) and the interface load-pressure distribution was recorded.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Three-Dimensional Road Structure Estimation by Fusion of a Digital Road Map and an Image

2002-03-04
2002-01-0758
Estimating distant road structure will be an important factor in determining the extent of danger of detected obstacles. There are some methods to estimate the road structure by an image from an onboard camera. However, the results are not sufficient due to the vertical curvature of roads and the limitation of image resolution. In this paper, a new method is proposed to estimate the 3-D road structure by fusion of a 2-D digital road map and an image from a camera. The effect of this method is confirmed by using synthesized data and actual data.
Technical Paper

Twenty-Year Review of Polymer-Clay Nanocomposites at Toyota Central R&D Labs., Inc.

2007-04-16
2007-01-1017
More than twenty years have passed since we invented polymer-clay nanocomposites (PCN), in which only a few wt.-% of silicate is randomly and homogeneously dispersed in the polymer matrix. When molded, these nanocomposites show superior properties compared to pristine polymers such as tensile strength, tensile modulus, heat distortion temperature, gas barrier property, and so on. The number of papers on PCN has increased rapidly in recent years, reaching over 500 only in 2005. As the pioneers of the new technology, we will review its history highlighting our works. Epoch-making events of PCN are as follows: In 1985, The first PCN, nylon 6-clay hybrid (NCH), was invented. In 1987, NCH was first presented at the ACS Fall Meetings. In 1989, NCH was presented at the MRS Fall Meetings, firing PCN. In 1989, Toyota launched cars equipped with a NCH part. In 1996, Clay was found to cause a memory effect in liquid crystals.
X