Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Newly Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine

1996-02-01
960579
To meet the requirements for higher horsepower and torque as well as lower fuel consumption and emissions, we have developed a new “Intelligent Variable Valve Timing (VV-i)” system. It gives continuously variable intake cam phasing by up to 60 degrees crank angle (CA) . This system not only increases WOT output by optimizing intake valve closing timing but also reduces fuel consumption and NOx/ HC emissions under part load by increasing intake and exhaust valve overlap on 4 stroke Spark Ignited engines. VVT-i has been applied to optimize a new 3-liter inline 6 engine for higher torque and at the same time better fuel economy with continuous and wide-range cam phasing.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

An Experimental Set Up Development for Brake Squeal Basic Research

2013-09-30
2013-01-2032
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived.
Technical Paper

Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine

2003-03-03
2003-01-0060
In the direct injection spark ignition gasoline engine (D-4), thin fan-shaped high-dispersion, high-penetration and high-atomization spray formed by the slit nozzle generates a stratified mixture cloud without depending on a strong intake air motion, subsequently realizing stable stratified charge combustion. To improve fuel economy further in actual traffic, the region of stratified charge combustion in torque-engine speed map must be expanded by improving spray characteristics. Since the fuel flow inside the nozzle has a large effect on the spray characteristics, it was clarified this effect by visual analysis of the fuel flow inside the nozzle using an enlarged acrylic slit nozzle of 10 magnifications. Consequently, it was found that vortices are generated frequently within a sac even in the case of steady state conditions. The effect on the spray characteristics is corresponding to the vortex scale.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Application of a New Combustion Concept to Direct Injection Gasoline Engine

2000-03-06
2000-01-0531
A direct injection (DI) gasoline engine having a new stratified charge combustion system has been developed. This new combustion process (NCP) was achieved by a fan-shaped fuel spray and a combustion chamber with a shell-shaped cavity in the piston. Compared with the current Toyota D-4 engine, wider engine operating area with stratified combustion and higher output performance were obtained without a swirl control valve (SCV) and a helical port. This report presents the results of combustion analyses to optimize fuel spray characteristics and piston cavity shapes. Two factors were found to be important for achieving stable stratified combustion. The first is to create a ball-shaped uniform mixture cloud in the vicinity of the spark plug. The optimum ball-shaped mixture cloud is produced with a fuel spray having early breakup characteristics and uniform distribution, and a suitable side wall shape in the piston cavity to avoid the dispersion of the mixture.
Technical Paper

Combustion Improvement of CNG Engines by Hydrogen Addition

2011-08-30
2011-01-1996
This research aimed to identify how combustion characteristics are affected by the addition of hydrogen to methane, which is the main components of natural gas, and to study a combustion method that takes advantage of the properties of the blended fuel. It was found that adding hydrogen did not achieve a thermal efficiency improvement effect under stoichiometric conditions because cooling loss increased. The same result was obtained under EGR stoichiometric conditions. In contrast, under lean burn conditions, higher thermal efficiency and lower NOx than with methane combustion was achieved by utilizing the wide flammability range of hydrogen to expand the lean limit. Although NOx can be decreased easily by the addition of large quantities of hydrogen, the substantially lower energy density of the fuel causes a substantial reduction in cruising range. Consequently, this research improved the combustion of a CNG engine by increasing the tumble ratio to 1.8.
Technical Paper

Concurrent CFD Analysis for Development of Rear Spoiler for Hatchback Vehicles

1997-02-24
970410
Airflow effect is one of the important functions demanded of a rear spoiler. It helps prevent mud or dust from swirling up behind the running vehicle, or in the case of driving in the rain or snow, helps prevent rain or snow from adhering to the rear window. During the design process, we often decide on the shape of a spoiler in a relatively short time, focusing primarily on its appearance. Therefore, we established a design method using the recently developed computational fluid dynamics (CFD) to determine the central cross sectional shape of a spoiler that produces a desired airflow effect. We verified its effectiveness through testing.
Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Cylinder Wear Mechanism in an EGR-Equipped Diesel Engine and Wear Protection by the Engine Oil

1987-11-01
872158
Piston ring moving zone in the cylinder is one of the most critical lubrication regimes in diesel engines. This area is susceptible to combustion substances. In particular, abnormal wear is occasionally detected due to Exhaust Gas Recirculation (EGR) system equipment. In Japan, NOx emission requirements for passenger car diesels have become more stringent effective October 1, 1986. OEMs tend to apply EGR systems to reduce NOx in exhaust gas. In order to identify the phenomenon of abnormal cylinder wear of EGR equipped engine, engine bench tests were conducted under varied conditions in EGR equipment, cooling water temperature and fuel sulfur content. The test results suggest that wear caused at low temperature is mainly corrosive wear attributable to sulfuric acid formed by reaction with fuel sulfur and condensed water.
Technical Paper

Development of 3.5L V6 Gasoline Direct Injection Engine - ESTEC 2GR-FKS/FXS -

2015-09-01
2015-01-1972
The new 2GR-FKS / FXS engines were developed to achieve stringent fuel economy and emission targets and respond to recent innovations in the field. The major parts of the 2GR-FKS/FXS engines were re-designed based on the well-received dynamic performance and fuel economy aspects of the 2GR-FE engine. The aims of this development were as follows. 1 Best-in-class power performance 2 Environmental performance that maximizes thermal efficiency and complies with fuel economy and emission regulations in each country by a wide margin 3 Engine response typical of V6 engines through drastic weight reduction of moving parts To achieve these conflicting aims, the developed engines use a modified version of the D-4S fuel injection system, which enables selective use of direct and port injection, in addition to advanced technologies such as variable valve technology (VVT) with a mid-position lock system and an exhaust port cooling system.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Development of Automatic Transmission Fluid for Slip-Controlled Lock-Up Clutch Systems

1995-10-01
952348
Slip-controlled lock-up clutch systems are very efficient and greatly improve fuel economy. On the other hand, these systems can cause unstable vibrations including those known as “shudder vibrations”. In this study, the authors made a theoretical analysis of these unstable vibrations to clarify the fundamental frictional properties of automatic transmission fluids (ATFs) required for slip-controlled lock-up clutch systems. Based on this analysis, we established lubricant technology having a sufficient anti-shudder property and high torque capacity. Further, we developed a new test apparatus to evaluate the anti-shudder durability for lubricant development.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Development of Di-Air - A New Diesel deNOx System by Adsorbed Intermediate Reductants

2011-08-30
2011-01-2089
An unprecedented phenomenon that achieves high NOx conversion was found over an NSR catalyst. This phenomenon occurs when continuous short cycle injections of hydrocarbons (HCs) are supplied at a predetermined concentration in lean conditions. Furthermore, this phenomenon has a wider range of applicability for different catalyst temperatures (up to 800 degrees Celsius) and SVs, and for extending thermal and sulfur durability than a conventional NOx storage and reduction system. This paper analyzes the reaction mechanism and concludes it to be highly active HC-deNOx by intermediates generated from adsorbed NOx over the base catalysts and HCs partially oxidized by oscillated HC injection. Subsequently, a high performance deNOx system named Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) was demonstrated that applies this concept to high speed driving cycles.
Technical Paper

Development of Direct Injection Gasoline Engine - Study of Stratified Mixture Formation

1997-02-24
970539
Effects of spray characteristics for stratified combustion of direct injection gasoline engine have been researched. The highly functional piezoelectric (PZT) injector was selected for this research. A hole and swirl nozzle were examined in a wide range of fuel pressure. The hole nozzle aims to make stratified mixture formation by vaporizing fuel on the piston, and the swirl nozzle aims to do so in the air above the piston by utilizing the spray characteristic of lower penetration and higher dispersibility. Both sprays could realize stable stratified combustion. The stability mainly depends on the combination of spray characteristic and piston cavity shape, and the swirl air motion which strength changes corresponding to engine operating conditions. The hole nozzle requires high, and the swirl nozzle less fuel pressure. Even by a large amount of EGR, stratified combustion has the advantage of combustion stability, and is useful to reduce exhaust emissions, especially NOx emissions.
Technical Paper

Development of Driving Force Control Technology of CVT for North American Market

2014-04-01
2014-01-1730
Toyota Motor Corporation developed a continuously variable transmission (CVT), unit K313, to satisfy the rising demand for improved fuel economy. This transmission was installed in the North American market Corolla for the 2014 model year. In this market, the driveability demands for automatic transmissions (AT) are very high. Additionally, the market is dominated by conventional AT with fixed gear ratios, leaving CVTs in the minority. In order to increase the volume and acceptance of CVTs in North America, excellent driveability had to be ensured. The key driveability advantage of CVTs is the ability to change gear ratio continuously without engaging or disengaging clutches. This allows for smooth driving without any shocks or gaps in drive force; however, it can also feel strange to drivers of conventional AT.
X