Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

A Newly Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine

1996-02-01
960579
To meet the requirements for higher horsepower and torque as well as lower fuel consumption and emissions, we have developed a new “Intelligent Variable Valve Timing (VV-i)” system. It gives continuously variable intake cam phasing by up to 60 degrees crank angle (CA) . This system not only increases WOT output by optimizing intake valve closing timing but also reduces fuel consumption and NOx/ HC emissions under part load by increasing intake and exhaust valve overlap on 4 stroke Spark Ignited engines. VVT-i has been applied to optimize a new 3-liter inline 6 engine for higher torque and at the same time better fuel economy with continuous and wide-range cam phasing.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

An Experimental Set Up Development for Brake Squeal Basic Research

2013-09-30
2013-01-2032
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Technical Paper

Analysis of Poor Engine Response Caused by MTBE-Blended Gasoline from the Standpoint of Fuel Evaporation

1992-02-01
920800
Fifty percent distillation temperature (T50) can be used as a warm-up driveability indicator for a hydrocarbon-type gasoline. MTBE-blended gasoline, however, provides poorer driveability than a hydrocarbon-type gasoline with the same T50. The purposes of this paper are to examine the reason for poor engine driveability caused by MTBE-blended gasolines, and to propose a new driveability indicator for gasolines including MTBE-blended gasolines. The static and dynamic evaporation characteristics of MTBE-blended gasolines such as the evaporation rate and the behavior of each component during evaporation were analyzed mainly by using Gas Chromatography/Mass Spectrometry. The results of the analysis show that the MTBE concentration in the vapor, evaporated at ambient temperature (e.g. 24°C), is higher than that in the original gasoline. Accordingly, the fuel vapor with enriched MTBE flows into the combustion chamber of an engine just after the throttle valve is opened.
Technical Paper

Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine

2003-03-03
2003-01-0060
In the direct injection spark ignition gasoline engine (D-4), thin fan-shaped high-dispersion, high-penetration and high-atomization spray formed by the slit nozzle generates a stratified mixture cloud without depending on a strong intake air motion, subsequently realizing stable stratified charge combustion. To improve fuel economy further in actual traffic, the region of stratified charge combustion in torque-engine speed map must be expanded by improving spray characteristics. Since the fuel flow inside the nozzle has a large effect on the spray characteristics, it was clarified this effect by visual analysis of the fuel flow inside the nozzle using an enlarged acrylic slit nozzle of 10 magnifications. Consequently, it was found that vortices are generated frequently within a sac even in the case of steady state conditions. The effect on the spray characteristics is corresponding to the vortex scale.
Technical Paper

Application of a New Combustion Concept to Direct Injection Gasoline Engine

2000-03-06
2000-01-0531
A direct injection (DI) gasoline engine having a new stratified charge combustion system has been developed. This new combustion process (NCP) was achieved by a fan-shaped fuel spray and a combustion chamber with a shell-shaped cavity in the piston. Compared with the current Toyota D-4 engine, wider engine operating area with stratified combustion and higher output performance were obtained without a swirl control valve (SCV) and a helical port. This report presents the results of combustion analyses to optimize fuel spray characteristics and piston cavity shapes. Two factors were found to be important for achieving stable stratified combustion. The first is to create a ball-shaped uniform mixture cloud in the vicinity of the spark plug. The optimum ball-shaped mixture cloud is produced with a fuel spray having early breakup characteristics and uniform distribution, and a suitable side wall shape in the piston cavity to avoid the dispersion of the mixture.
Technical Paper

Development of 3.5L V6 Gasoline Direct Injection Engine - ESTEC 2GR-FKS/FXS -

2015-09-01
2015-01-1972
The new 2GR-FKS / FXS engines were developed to achieve stringent fuel economy and emission targets and respond to recent innovations in the field. The major parts of the 2GR-FKS/FXS engines were re-designed based on the well-received dynamic performance and fuel economy aspects of the 2GR-FE engine. The aims of this development were as follows. 1 Best-in-class power performance 2 Environmental performance that maximizes thermal efficiency and complies with fuel economy and emission regulations in each country by a wide margin 3 Engine response typical of V6 engines through drastic weight reduction of moving parts To achieve these conflicting aims, the developed engines use a modified version of the D-4S fuel injection system, which enables selective use of direct and port injection, in addition to advanced technologies such as variable valve technology (VVT) with a mid-position lock system and an exhaust port cooling system.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Development of Air Fuel Ratio Sensor for 1997 Model Year LEV Vehicle

1997-02-24
970843
An exhaust air fuel ratio sensor (A/F sensor), which is applied to a 1997 model year LEV vehicle was developed. This sensor enables the detection of the exhaust gas air fuel ratio, both lean and rich of stoichiometric. This A/F sensor was developed from a lean mixture sensor, which has a proportional output to the exhaust gas air fuel ratio in the lean region only, by widening the detection range to rich air fuel ratios to 12:1. This sensor is comprised of a zirconia solid electrolyte and a platinum electrode with a ceramic coating used as a diffusion layer. As a result of improvements, it has a effective air fuel ratio range from 12 to 18 as required for LEV vehicles with model based air fuel control systems. It has a fast light off, -- within 20 seconds -- to minimize exhaust hydrocarbon content. Further, it has fast response times, less than 200 msec., to improve air fuel ratio controllability.
Technical Paper

Development of Automatic Transmission Fluid for Slip-Controlled Lock-Up Clutch Systems

1995-10-01
952348
Slip-controlled lock-up clutch systems are very efficient and greatly improve fuel economy. On the other hand, these systems can cause unstable vibrations including those known as “shudder vibrations”. In this study, the authors made a theoretical analysis of these unstable vibrations to clarify the fundamental frictional properties of automatic transmission fluids (ATFs) required for slip-controlled lock-up clutch systems. Based on this analysis, we established lubricant technology having a sufficient anti-shudder property and high torque capacity. Further, we developed a new test apparatus to evaluate the anti-shudder durability for lubricant development.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Technical Paper

Development of Driving Force Control Technology of CVT for North American Market

2014-04-01
2014-01-1730
Toyota Motor Corporation developed a continuously variable transmission (CVT), unit K313, to satisfy the rising demand for improved fuel economy. This transmission was installed in the North American market Corolla for the 2014 model year. In this market, the driveability demands for automatic transmissions (AT) are very high. Additionally, the market is dominated by conventional AT with fixed gear ratios, leaving CVTs in the minority. In order to increase the volume and acceptance of CVTs in North America, excellent driveability had to be ensured. The key driveability advantage of CVTs is the ability to change gear ratio continuously without engaging or disengaging clutches. This allows for smooth driving without any shocks or gaps in drive force; however, it can also feel strange to drivers of conventional AT.
Technical Paper

Development of Exhaust Manifold Muffler

1993-03-01
930625
The muffler layout in the exhaust system has been optimized for the attenuation of exhaust noise which has not been studied much to this date. As a result, “Exhaust Manifold Muffler” has been developed. This unit is capable of efficiently muffling the primary and secondary componemts of the engine explosion stroke noise. Such task is achieved without deterioration of engine performance by allocating the volume at the junction of the exhaust manifold branch pipes. Acoustic characteristics of “Exhaust Manifold Muffler” have been analyzed by FEM and experimental methods, which have shown that not only does the volume placed at the junction of the exhaust manifold branch pipes work as a conventional muffler, but also prevents the exhaust manifold branch pipes from amplifying exhaust noise. This is the reason why “Exhaust Manifold Muffler” can muffle more efficiently than the conventional muffler.
Technical Paper

Development of Fuel Cell Hybrid Vehicle in TOYOTA

2011-05-17
2011-39-7238
The outline of the TOYOTA FCHV-adv is described in this paper. The TOYOTA FCHVadv achieved an approximately 25 percent improvement in vehicle fuel efficiency and about 1.9 times the amount of usable hydrogen in comparison with the previous model. These improvements have enabled almost 2.5 times longer practical cruising range, more than 500 km. The freeze start capabilities of the FCHV-adv were improved by modifying the FC stack and control system. As a result, the FCHV-adv has been capable of starting at a temperature of -30°C. In the future, TOYOTA intends to improve durability and reduce costs.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
X