Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study on Friction Materials for Brake Squeal Reduction by Nanotechnology

2008-10-12
2008-01-2581
Brake squeal is caused by dynamic instability, which is influenced by its dynamic unstable structure and small disturbance of friction force variation. Recently, FE Analysis of brake squeal is applied for brake design refinements, which is based on dynamic instability theory. As same as the refinement of brake structure is required for brake squeal reduction, the refinement of pad materials is also required for brake effectiveness and brake squeal reduction. It is well known that friction film, which is composed of polymers like phenol formaldehyde resin and so on, influences for friction coefficient. Therefore it is expected that the refinement of polymers in pad materials enable higher brake effectiveness and less brake squeal. In this paper, Molecular Dynamics is applied for the friction force variation of polymers in pad materials. The MD simulation results suggest the reduction method of friction force variation of polymers.
Technical Paper

HCCI Combustion in DI Diesel Engine

2003-03-03
2003-01-0745
Ignition and combustion control of HCCI (Homogeneous Charge Compression Ignition) in DI (Direct Injection) Diesel Engine were examined. In this study, double injection technique was used by Common Rail injection system. The first injection was used as an early injection for fuel diffusion and to advance the changing of fuel to lower hydrocarbons (i.e. low temperature reaction). The second injection was used as an ignition trigger for all the fuel. It was found that the ignition of the premixed gas could be controlled by the second injection when the early injection was maintaining low temperature reaction. It was found that as the boost pressure increased, ignition timing advanced slightly and the rate of pressure increase markedly decreased. The rate of pressure increase is one of the factors concerning operation limit in this combustion. Therefore, the VNT (Variable Nozzle Turbo-charger) was applied to the production engine to allow boost pressure control.
Technical Paper

Numerical Analysis of Ignition Control in HCCI Engine

2003-05-19
2003-01-1817
The UNIBUS (Uniform Bulky Combustion System) based on the HCCI (Homogeneous Charge Compression Ignition) concept uses an early injection quantity, timing, boost pressure, EGR, etc. for ignition control [1]. To further expand the operation range from the present level, the effects of the atmospheric conditions on ignition and combustion were calculated using CHEMKIN in the present study. When controlling the start timing of the high temperature reaction to suppress the early ignition, it is more effective to apply EGR than boost pressure. If fuel quantity is increased to expand load, it is possible to suppress a sharp cylinder pressure rising rate by increasing the boost pressure. Furthermore, it has become apparent that the cause of this is an increase in heat capacity.
Technical Paper

Simulation of Abnormal Fuel Injection in Diesel Engines

1990-02-01
900345
Abnormal fuel injection in light-duty, high-speed diesel engines was analyzed by developing a mathematical simulation program. It predicts the transient hydraulic phenomena and the dynamics of the mechanical components by applying the injection system design data. The results show the existence of marked changes of injection quantity against residual pressure, cavity content and pump speed, in the case of abnormal fuel injection. Closer observation reveals that the injection rate change from two-stage to one-stage causes a marked change in injection quantity.
X