Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

A Study on Low-Frequency Brake Squeal Noise

1996-02-01
960993
A new method to predict low-frequency brake squeal occurrence was developed and guidelines for its elimination were formulated. First, a characteristic of the phenomenon was investigated using a simplified three-degree-of-freedom system model to obtain guidelines for squeal elimination, such as the natural frequency ratio of the brake rotor and caliper, an equivalent mass ratio of the brake rotor and caliper and the natural frequency and damping coefficient of the dynamic absorber. Then, a practical finite element model of the disk brake system was developed using Substructure Synthesis Method for design stage predictions. Finally, the usefulness of this method was confirmed by experimental validation.
Journal Article

A Study on Trigger of Disc Brake Squeal Generation

2015-09-27
2015-01-2682
It is well known that disc brake squeal is often caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under small disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes a study on trigger of disc brake squeal generation. First, the development of experimental set-up for disc brake squeal basic research and experimental results are described. Second, the equation of motion in disc brake squeal is derived and the vibration induced by small disturbance are analyzed. Furthermore, kinetic energy increase per 1 cycle in minute vibration are calculated, which represents the influence of friction and wear between disc and pad with caliper.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Journal Article

An Application of Shape Optimization to Brake Squeal Phenomena

2015-09-27
2015-01-2658
The present paper describes an application of non-parametric shape optimization to disc brake squeal phenomena. A main problem is defined as complex eigenvalue problem in which the real part of the complex eigenvalue causing the brake squeal is chosen as an objective cost function. The Fre´chet derivative of the objective cost function with respect to the domain variation, named as the shape derivative of the objective cost function, is evaluated using the solution of the main problem and the adjoint problem. A selection criterion of the adoptive mode number in component mode synthesis (CMS), which is used in the main problem, is presented in order to reduce the computational error in complex eigenvalue pairs. A scheme to solve the shape optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. For an application of the optimization method, a numerical example of a practical disc brake model is presented.
Technical Paper

An Experimental Set Up Development for Brake Squeal Basic Research

2013-09-30
2013-01-2032
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived.
Technical Paper

Analysis of Milling Mechanism by Ball End-Mill and Development of High Speed Die-Sinking Method

1988-11-01
881742
Various dies have been used for producing many internal and external parts of an automobile. This paper describes the method of ‘High Speed Die-sinking’ that is one of the key technologies for die-making. We analyzed the milling mechanism of a typical Ball End-Mill used for die-sinking and performed cutting tests. As a result, we have achieved high speed and fine quality die-sinking technology. Its feed speed is about four or five times as fast as before, and the irregularity of the milled surface is under one-fifth as compared with previous level. In addition, we will propose the new method for estimating finishing performance by ball end-mill.
Technical Paper

Analysis of Sintered Silicon Nitride Grinding Damage

1993-03-01
930163
Sintered silicon nitride, particularly in structural ceramics, has superior properties such as low weight, heat resistance, wear resistance, etc. It is already being applied to automobile engine parts such as the swirl chamber and the turbine rotor. In recent years, the strength of silicon nitride has shown to be above 1000MPa. This has been achieved through advances in manufacturing technology such as materials powder, forming, sintering and so on. But the silicon nitride is easily damaged during grinding because it has less fracture toughness than metal. Consequently, the inherent strength of the material is not demonstrated in the actual products presently produced. It is assumed that the main cause of strength reduction is microcrack. In ordinary grinding methods, the length of microcrack has been estimated at approximately twenty micrometers by fracture mechanics analysis.
Technical Paper

Automatic Transmission Control System Developed for Toyota Mild Hybrid System (THS-M)

2002-03-04
2002-01-1253
Environmental improvement is moving forward, due in part to the reduction of fuel consumption of automatic transmission(AT) vehicles as a result of social requirements in recent years and many measures have been implemented. Adoption of idling stop is a typical example introduced to reduce energy consumption while the vehicle is stopped to improve the urban environment. However, there are problems such as responsiveness and smoothness for an AT vehicle when the engine is stopped with the shift selector in “D” range. To overcome these problems, a new start clutch control system has been developed using an electric oil pump installed in a simple hybrid vehicle called a mild hybrid. As a result, a smooth feeling starting performance is achieved by operating the system in combination with the engine and other systems.
Technical Paper

Binding Force Control of Uni-Pressure Cushion in Automobile Panel Stamping

1995-02-01
950916
Recently, single action draw with cushion replaces draw with double action presses. In the single action draw, binding fluctuation problem occurs by its structure. We applied an NC cushion to prevent the problem. We compared the cushion force wave with and without an NC cushion. The NC cushion showed effective damping. We studied the binding force control of a side member outer panel. The panel didn't have the formable range of binding. This means the lowest binding force to avoid wrinkling, still had crack problems. We introduce four patterns of binding force control with the NC cushion. As a result, we found the suitable pattern to suppress the surface distortion. Controlling the binding force shows effectiveness as a means of suppressing surface distortions.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Development of 2-Liter 6-Cylinder Gasoline Engines, Toyota 1G Engine Series

1987-10-01
871976
1G engine series consists of four types of 2-liter, in-line, 6-cylinder gasoline engines for passenger cars, with different performance characteristics to meet diversified market demands. These engines are already put into mass production. The original engine - 1G-EU - is a compact and light weight 2-valve OHC engine with the maximum power 77 kW/5200 rpm. The 1G-GEU is a 4-valve DOHC engine developed on the basis of the 1G-EU engine, with a higher performance and a higher power of 103 kW/6200 rpm. The 1G-GZEU is a mechanical supercharging type engine based on the 1G-GEU, with a remarkably improved performance in the low and medium engine speed ranges, and the highest power of 110 kW/6000 rpm. The 1G-GTEI! is a turbocharging type engine also based on the 1G-GEU, with a markedly improved performance in the medium and high speed ranges, and the high power of 136 kW/6200 rpm. A number of new technologies were introduced on development of these engines.
Technical Paper

Development of ABS and Traction Control Computer

1990-09-01
901707
A new ABS and Traction control system (TRAC system) has been developed and put into mass production in a new model LEXUS LS400. The TRAC system controls Sub-Throttle Valve and brake hydraulic pressure independently for left and right wheels. To realize the ABS and TRAC system,it is necessary for the Electronic Control Unit (ECU) to process complex algorithm and high speed calculation. The ABS and TRAC ECU for LEXUS LS400 is constructed by 3 TOYOTA custom 8-bit single chip microcomputers. Each CPU performs wheel speed calculation,ABS control and TRAC control,sharing the common data through high speed serial communication. This paper describes the function of each CPU,the method of CPU communication and fail safe function in the ECU.
Technical Paper

Development of Assembly Line Verification

1994-03-01
940890
To more effectively improve the work on a vehicle assembly line, it is desirable to have a method by which the degree of work load on each person can be evaluated quantitatively; enables us to decide the priority order of improvement; and calculates the improvement effect. We developed a quantitative evaluation method of work load by introducing a concept of physiological stress generated regardless of the type of muscles involved. Applying the burden borne by the body to the load evaluation of various assembly operations involved the problem of complex load measuring methods. We solved this problem by categorizing the load conditions for various assembly operations and converting each to a standard state of loads evaluated by experiments.
Technical Paper

Development of Ductile Cast Iron Flywheel Integrated with Hot Form-Rolled Gear

1998-02-01
980568
New ductile cast iron flywheel integrated with gear and its manufacturing process were developed to reduce the manufacturing steps and cost compared with conventional flywheel around which a steel ring gear is fit. In this process, the ring gear teeth around a cast iron flywheel are formed directly in net shape and free from any defect by the hot form-rolling method, followed by the thermomechanical treatment in a short time. The gear is superior to that made by the conventional hobbing and heat treatment in accuracy, strength and anti-wear property.
Technical Paper

Development of Feedforward Control Algorithms for Active Suspension

1992-02-01
920270
A Slow Active Suspension system has the advantage of requiring less energy than a Full Active Suspension system. But for improving vehicle's attitude control, feed-forward control becomes of paramount importance. This paper describes the control algorithms utilized in the Slow Active Suspension system that Toyota has just made available on the Japanese market. Special control items specifically developed for this system are; I ) The parameter Kwt, which is the ratio between the estimated differential value of lateral acceleration from steering angle velocity and that from lateral acceleration sensor in order to realize fast response to transient roll control, II ) Side Slip Judgement, which prevents the feed-forward errors in the case of changing co-efficients of surface friction, III ) Heave control, which prevents the vertical motions caused by heave disturbance force in the suspension cylinders during high-G turns.
Technical Paper

Development of Four Wheel Steering System Using Yaw Rate Feedback Control

1991-09-01
911922
Toyota has succeeded in developing for mass production the active four-wheel steering(4WS) system using yaw rate feedback and steering angle feedforward control. The active 4WS system consists of a group of various sensors, including the newly developed yaw rate sensor, ECU, a rear wheel steering actuator that employs a stepping motor and hydraulic valve, and other hydraulic elements, which actively control the steering angle of the rear wheels. The new system ensures a good response and a high level of stabililty for quick steering wen during a high-speed drive. When the vehicle deflects due to a sudden side wind, road surface disturbance, or abrupt braking, steering is automatically corrected through the rear wheels to significantly improve forward stability. In addition, the! system prwides improved performance in making small radius turns because the rear wheels are steering up to five degrees when the front wheels are turned to a large angle.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Technical Paper

Development of High Fatigue Strength Spring - Application on Clutch Disc Torsional Damper

1995-02-01
950903
We have developed a new torsional damper spring which lowers the torsional rigidity of the clutch disc while retaining its conventional size. The following two items have been adopted in the newly developed spring: 1) A new steel wire which suppresses any core-softening of the element wire through nitriding. 2) A dual-stage shot peening method which uses harder steel shots (rather than conventional shots) in order to obtain an optimal residual stress profile. As a result of evaluating the fatigue characteristics of this spring, it was discovered that its fatigue strength is approximately 35% higher than that of the conventional spring. A clutch disc using this spring was able to absorb rattling noises which conventional clutch discs could not.
Technical Paper

Development of High Performance Wheel Torque Measuring System and Its Applications

1987-02-01
870642
The wheel torque measuring system (abbr. WTMS) has been developed for evaluating the torque applied to each wheel of automotive vehicles under actual running conditions. WTMS is a novel type system in which the torque signal is transmitted by a high-performance and compact photo-telemetric coupling system. Within the torque measurement range of ±2.94 kN·m, the resolution of torque output is ±1 N·m so that torque can be measured with an extremely high degree of accuracy. Therefore, measurements can be taken from the high torque applied in the case of a quick accelerating test or a sudden braking test to the measurement of a low amount of torque such as running resistance of a vehicle.
X