Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

Effects of Squish Area Shape on Knocking in a Four-Valve Spark Ignition Engine

1999-05-03
1999-01-1494
Squish flow control is well known as a key technology for improving knock limit in spark ignition engines. However, to acquire a sufficient squish area in a four-valve engine is difficult. In order to achieve a maximum effect of knock suppression with a minimum squish area, we have developed, what we call, a Slant Squish Combustion Chamber for new engines. A slant squish compared with a conventional squish produces an effective reverse squish flow in the early expansion stroke, resulting in higher flow velocity and turbulence. Furthermore, flame propagation to squish area and end gas is accelerated. These improvements are considered to suppress the knock phenomenon. Consequently, with a slant squish, a high compression ratio, to achieve low fuel consumption and high engine performance is realized.
X