Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Analysis of Degradation Mechanism of Lead-Free Materials

2009-04-20
2009-01-0260
The use of lead-free (Pb-free) solder and plating in onboard electronic components has accelerated rapidly in recent years, but solutions have yet to be found for the issues of whisker generation in tin (Sn) plating and crack initiation in Pb-free solder, despite widespread research efforts. Analysis of the whisker generation mechanism has focused on internal energy levels and crystal orientation, and analysis of the crack initiation mechanism in Pb-free solder has examined changes in the grain boundaries of Sn crystals.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

Analysis of Occupant Kinematics of Rollover Buck Test

2016-04-05
2016-01-1516
Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
Technical Paper

Application of Soap Film Geometry for Low Noise Floor Panels

1999-05-17
1999-01-1799
A method for applying soap film geometry to an automobile body structure has been developed. Its curved surface reduce both interior noise and damping material application because of its high rigidity and uneven deformation mode. This paper demonstrates these mechanism, benchmarks their performance with conventional flat and bead panels and presents an application to the floor panel of an automobile body.
Technical Paper

Deployment of OTA-Upgradable Teammate Advanced Drive

2022-03-29
2022-01-0063
Teammate Advanced Drive is a driving support system with state-of-the-art automated driving technology that has been developed for customers’ safe and secure driving on highways based on the Toyota’s Mobility Teammate Concept. This SAE Level 2 (L2) system assists overtaking, lane changes, and branching to the destination, in addition to providing hands-free lane centering and car following. The automated driving technology includes self-localization onto a High Definition Map, multi-modal sensing to cover 360 degrees of the surrounding environment using fusion of LiDARs, cameras, and radars, and a redundant architecture to realize fail-safe operation when a malfunction or system limitation occurs. High-performance computing is provided to implement deep learning for predicting and responding to various situations that may be encountered while driving.
Technical Paper

Development and Application of an Enhanced SID-IIs Dummy for Analyzing Side Impact Kinematics

2009-04-20
2009-01-1432
Due to the relative high speed and short distance between the door and occupant, side impact presents a challenging task when analyzing the input force from the door to the occupant. The new FMVSS214 Final Rule in 2007 and the new NCAP in 2008 mandated the use of a SID-IIs in the oblique pole impact test and in the rear seat during an MDB side impact test. Therefore, a high-precision measurement and calculation of the three-dimensional dummy kinematics, as well as the interaction of force inside the dummy (internal force) and force exerted from outside the dummy (external force) will help provide efficient evaluation of design requirements for the door trim and supplemental restraint systems that meet legally mandated requirements.
Technical Paper

Development of Automatic Door Lock System to Help Prevent Collisions between Opened Doors and Approaching Vehicles When Exiting Vehicle

2022-03-29
2022-01-0068
Collisions between opened doors and approaching vehicles such as bicycles are common occurrences in urban areas around the world. For example, in Chicago, 20% of all bicycle accidents involve collisions with doors, which occur over 300 times a year. In addition, there are concerns about a further rise in accidents due to the recent increase in home delivery services and bicycle commuting during the COVID-19 pandemic. Some advanced driver assistance systems (ADAS) that are designed to help prevent this type of accident have already been introduced. These systems detect approaching vehicles with sensors and alert the person opening the door via LED lights or a buzzer when the door is opened. The occupant must understand the meaning of the alert and stop opening the door quickly to prevent an accident. However, if the occupant is an elderly person or a child, it is difficult to stop opening the door quickly.
Technical Paper

Development of CFD Inverse Analysis Technology Targeting Heat or Concentration Performance Using the Adjoint Method and Its Application to Actual Components

2018-04-03
2018-01-1033
To resolve two major problems of conventional CFD-based shape optimization technology: (1) dependence of the outcome on the selection of design parameters, and (2) high computational costs, two types of innovative inverse analysis technologies based on a mathematical theory called the Adjoint Method were developed in previous studies for maximizing an arbitrary hydrodynamic performance aspect as the cost function: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape. Furthermore, these technologies were extended to transient flows by the application of the transient Adjoint Method theory. However, there are many cases around flow path shapes in vehicles where performance with respect to heat or concentration, such as the total amount of heat transfer or the flow rate of a specific gas component, is very important.
Journal Article

Development of Compact and High-Performance Fuel Cell Stack

2015-04-14
2015-01-1175
Toyota Motor Corporation (TMC) has been developing fuel cell (FC) technology since 1992, and finally “MIRAI” was launched in 15th Dec. 2014. An important step was achieved with the release of the “FCHV-adv” in 2008. It established major improvements in efficiency, driving range, durability, and cold start capability. However, enhancing performance and further reductions in size and cost are required to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs). TMC met these challenges by developing the world's first FC stack without a humidifying system. This was achieved by the development of an innovative cell flow field structure and membrane electrode assembly (MEA), enabling a compact and high-performance FC stack. Other cost reduction measures incorporated by the FC stack include reducing the amount of platinum in the catalyst by two-thirds and adopting a carbon nano-coating for the separator surface treatment.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Journal Article

Development of Fracture Model for Laser Screw Welding

2016-04-05
2016-01-1344
This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
Technical Paper

Development of Hall Effect Device Based Height Sensor

2005-04-11
2005-01-0459
We have developed a Hall effect device based height sensor of a smaller size, and with higher temperature operation durability, as compared to conventional devices. Downsizing of the sensor is realized by decreasing a number of parts, and by employing a short bearing. Improvement in heat resistance is achieved by adopting an IC with sufficient heat resistance and a SmCo magnet with high coercive force. In addition, a sensor of a high degree of accuracy is accomplished by improvements in linearity and robustness of magnetic characteristics. Development of a small, heat-resistant and accurate height sensor will promote the spread of systems using a height sensor, such as a High Intensity Discharge (HID) headlamp.
Journal Article

Development of Hardening Depth Evaluation Technique using Eddy Current – Establishment and Introduction of In-line Hardening Depth Inspection System –

2009-04-20
2009-01-0867
A hardening depth evaluation technique using eddy current has been developed, which can be applied to a mass production line for destructive (cutting) inspections. Using this technique, changes in the hardness of the induction-hardened structure can be detected based on the changes in magnetic permeability. This technique reduces the thermal effect and improves measurement accuracy through a multi-frequency exciting method and a difference method algorithm.
Technical Paper

Development of High-Pressure Hydrogen Storage System for New FCV

2021-04-06
2021-01-0741
This paper describes the high-pressure hydrogen storage system developed for new FCV. With the aim of further popularizing FCVs, this development succeeded in improving the performance of the system and reducing costs. This new storage system consists of multiple tanks of different sizes, which were optimized to store the necessary amount of hydrogen without sacrificing the interior space of the vehicle. The new tanks achieved one of the highest volume efficiencies in the world by adopting high-strength carbon fiber, developed in conjunction with the carbon fiber manufacturer, and by optimizing the layered construction design which allowed the amount of carbon fiber to be reduced. To increase the amount of available hydrogen, the longer high pressure tanks were mounted under the vehicle floor unlike the previous model. This was accomplished by the following two measures: First, individual design and manufacturing measures for the tanks were adopted.
Technical Paper

Development of Hybrid Model for Powerplant Vibration

1999-05-17
1999-01-1656
This paper covers the application of hybrid vibro-acoustic simulation methods to shorten the design cycle of power-plant components. A comparison is made between Frequency Response Function based and Modal based algorithms for the generation of a predictive powerplant assembly model. The effectiveness of design modifications is evaluated by loading the original and modified predictive models with experimentally identified excitation forces. The procedure is validated by correlation with experimental data.
X