Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

BMW's Magnesium-Aluminium Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing

2006-04-03
2006-01-0069
This paper presents new aspects of the casting and manufacturing of BMWs inline six-cylinder engine. This new spark-ignition engine is the realization of the BMW concept of efficient dynamics at high technological level. For the first time in the history of modern engine design, a water-cooled crankcase is manufactured by magnesium casting for mass production. This extraordinary combination of magnesium and aluminium is a milestone in engine construction and took place at the light-metal foundry at BMW's Landshut plant. This paper gives a close summary about process development, the constructive structure, and the manufacturing and testing processes.
Technical Paper

CAE Methodology for Optimizing NVH, Functional Reliability, and Mass Reduction at Engine Concept Design Phase

2011-05-17
2011-01-1511
Due to the global economic downturn and higher environmental awareness, the social demands for low cost and fuel efficient vehicles are increasing. At the same time the engine power is increasing and customer expectations of reliability and NVH levels are increasing. To meet all the requirements, engineers are challenged to design light weight parts with higher performance. However, unconsidered mass reduction carries a risk of compromised NVH, Functional Reliability, and other functional demands. In order to resolve this contradiction, it is important to establish a basic structure with minimum necessary mass at the concept design phase, when there are still many degrees of freedom in the design space. Hence, a multi-objective optimization CAE methodology applicable for designing the basic structure of the Engine system was developed and is detailed below.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
Technical Paper

Development of New Hybrid Transaxle for Mid - Size Vehicle

2018-04-03
2018-01-0429
The new P710 hybrid transaxle for a mid-size 2.5-liter class vehicle was developed based on the Toyota New Global Architecture (TNGA) design philosophy to achieve a range of desired performance objects. A smaller and lighter transaxle with low mechanical loss was realized by incorporating a new gear train structure and a downsized motor. The noise of the P710 transaxle was also reduced by adopting a new damper structure.
Journal Article

Development of New IGBT to Reduce Electrical Power Losses and Size of Power Control Unit for Hybrid Vehicles

2017-03-28
2017-01-1244
One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
Technical Paper

Development of Power Control Unit for Compact-Class Vehicle

2020-04-14
2020-01-0456
Toyota Motor has developed a new compact class hybrid vehicle (HV). This vehicle incorporates a new hybrid system to improve fuel efficiency. For this system, a new power control unit (PCU) has been developed that is downsizing, lightweight, and high efficiency. It is also important to have a highly adaptable function that can be applied to various car models. This paper describes the development of PCUs that play an important role in new systems.
Journal Article

Development of Power Control Unit for Compact-Class Vehicle

2016-04-05
2016-01-1227
Toyota Motor Corporation has developed the new compact-class hybrid vehicle (HV). This vehicle incorporates a new hybrid system for the improvement of fuel efficiency. For this system, a new Power Control Unit (PCU) is developed. The feature of the PCU is downsizing, lightweight, and high efficiency. In expectation of rapid popularization of HV, the aptitude for mass production is also improved. The PCU, which plays an important role in the new system, is our main focus in this paper. Its development is described.
Technical Paper

Development of RC-IGBT with a New Structure That Contributes to Both Reduced Size of Power Control Unit and Low Loss in Hybrid Electric Vehicles

2020-04-14
2020-01-0596
In order to improve the fuel efficiency of Hybrid Electric Vehicles (HEVs), it is necessary to reduce the size and power loss of the HEV Power Control Units (PCUs). The loss of power devices (IGBTs and FWDs) used in a PCU accounts for approximately 20% of electric power loss of an HEV. Therefore, it is important to reduce the power loss while size reduction of the power devices. In order to achieve the newly developed PCU target for compact-size vehicles, the development targets for the power device were to achieve low power loss equivalent to its previous generation while size reduction by 25%. The size reduction was achieved by developing a new RC-IGBT (Reverse Conducting IGBT) with an IGBT and a FWD integration. As for the power loss aggravation, which was a major issue due to this integration, we optimized some important parameters like the IGBT and FWD surface layout and backside FWD pattern.
Technical Paper

Development of Side Impact Dummy FE Models using Reverse Engineering

2012-04-16
2012-01-0091
This paper describes the development of dummy FE models to be used for side impact simulations. The precise geometries of the ES-2re dummy and the SID-IIs dummy were measured at a pitch of 1.0 mm using X-ray CT scan. The material properties and the mechanical responses of the components were measured in static and dynamic tests and were used for the model validation. The models were further validated to US-NCAP side impact requirements. Good correlation was seen for both response time history, and to peak deformation values. It is shown that modeling the precise dummy internal structure in addition to the external geometry and applying accurate material properties enabled simulation of deformation kinematics and load transfer inside the dummies. As a result, it was possible to accurately simulate the injury value time histories in an actual test, and understand the mechanisms causing changes to the loading.
Technical Paper

Development of Suspension Design Technology Applying Principal Elastic Axes

2007-04-16
2007-01-0857
Automobile manufacturers have increased the pace of vehicle development in recent years to respond to diverse market demands. Consequently, it has become crucial for manufacturers to develop new technology which enables a particular vehicle to simultaneously achieve both ride comfort and handling performance at an optimal level. This article introduces the suspension design technology applying the Principal Elastic Axes that has been developed by our company for use in its vehicles. These axes, which consist of three translational and three rotational axes, represent the set of fully decoupled stiffness axes. Applying the Principal Elastic Axes to the suspension reduces the number of design parameters, which enables suspension movements to be considered totally and simply.
Journal Article

Development of iQ with CVT for USA

2011-04-12
2011-01-1425
TOYOTA has developed the iQ with a 1.3L engine for the Scion brand in USA. Due to the importance of fun-to-drive factor for the Scion brand image, a responsive driving performance is required even with compact packaging and a small engine. In addition, because of the recent attention to global-warming and energy issues on a global scale, development of vehicles with high fuel economy is one of the most important issues for a car manufacturer. Therefore, it is necessary for a vehicle to have both high driving performance and fuel economy. TOYOTA has adopted the CVT-i as the transmission for this purpose. The following were achieved by adopting the CVT-i as the transmission for the iQ(1.3L). 1 Responsive driving performance with shift changes without a time lag. 2 Compact transmission for efficient vehicle packaging 3 Class-leading fuel economy performance. Moreover, it was developed with adjustments for the US market by improving the shift schedule for a linear acceleration feel.
Technical Paper

Development of resin back door glass for ES3

2003-10-27
2003-01-2816
Toyota is implementing various technical developments in various fields for protection of environment. Reducing the fuel consumption is a matter of great urgency for the reduction of CO2 emissions. In the technology of vehicle body development, mass reduction and the improvement of aerodynamics are mainly important for fuel economy. As the one of way for this, we adopted resin glass as the back door glass of ES3, small-sized low-fuel consumption vehicle. (Figure 1,2,3) The first advantage of resin glass is the low density that weights about a half of inorganic glass. However resin glass is needed higher thickness for equivalent rigidity, as the result approximately 41% mass reduction was achieved. However resin glass is relatively expensive. Therefore it seems to be difficult to expand the usage of resin for this application. Then, we focused on additional advantage of resin glass, in order to make good use of resin glass. The second advantage of resin glass is design flexibility.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
Technical Paper

Efficiency Improvement in Exhaust Heat Recirculation System

2016-04-05
2016-01-0184
In order to speed up engine coolant warm-up, the exhaust heat recirculation system collects and reuses the heat from exhaust gases by utilizing the heat exchanger. The conventional system improves actual fuel economy at the scene of the engine restart in winter season only. The heat recirculation system becomes more effective at the low outside temperature because it takes longer time to warm up engine coolant. However, the heat recirculation system becomes less effective at the high outside temperature because it takes shorter time to warm up engine coolant. Therefore, the new exhaust heat recirculation system is developed, which adopted as follows: 1) a fin-type heat exchanger in order to enhance exhaust recirculation efficiency 2) a thinner heat exchanger component and smaller amount of engine coolant capacity in the heat exchanger in order to reduce the heat mass As a result, the actual fuel economy is more improved in winter season.
Technical Paper

Evaluation of the Recyclability of Vehicles During the Product Development Phases

2000-04-26
2000-01-1469
In a voluntary agreement, the German automobile industry has undertaken to recover 95 percent by weight of End–of–Life Vehicles in the year 2015. In addition, the European draft directive on „End–of–Life Vehicles” recycling calls for evidence that at least than 85 percent by weight of the materials are suitable for material recycling. It is therefore essential while new vehicles are being developed to be in a position to assess their suitability for dismantling and recycling. An automobile consists of a large number of individual components, each of which must be examined separately before a well–founded statement regarding the overall recycling level can be made. For this purpose the BMW Group has developed its own dismantling software which permits virtual dismantling analysis even during a vehicle's development phase and thus enables suitability for recycling to be determined at the earliest possible time.
X