Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impacts of Dynamic Toe Angle Variations on Four-Wheel Independent Steering Control and their Optimization Strategies

2024-04-09
2024-01-2321
Compared to traditional vehicles, four-wheel independent drive and four-wheel independent steering (4WID-4WIS) vehicles have gained significant attention from researchers due to their enhanced control flexibility and superior handling performance. The steering angle deviation caused by dynamic toe angle changes in two-wheel steering (2WS) systems is often minimal and hence overlooked. However, the impact becomes notably significant in 4WIS systems. This article contrasts the tire slip angle differences between 2WS and 4WIS, and delves into the effects of dynamic toe angle variations on 4WIS control. Solutions are proposed both in terms of steering angle control and suspension design. Firstly, a dynamic model for the 4WID-4WIS vehicle is established. Secondly, a hierarchical tire force distribution strategy is designed for trajectory tracking.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
X