Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

2017-10-08
2017-01-2359
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence

2018-09-10
2018-01-1685
Compressed Natural Gas (CNG), because of its low cost, high H/C ratio, and high octane number, has great potential in automotive industry, especially for heavy-duty commercial vehicles. However, relative slow flame speed of natural gas leads to long combustion duration and low thermal efficiency and tends to cause knock combustion at high load, which will aggravate engine thermal load and reliability. Enhancing turbulence intensity in combustion chamber is an effective way to accelerate flame propagation speed and improve combustion performance. In this study, the flow simulations of several piston bowls with different inner-convex forms were carried out using three-dimensional computational fluid dynamics (3D-CFD) software CONVERGE. The numerical results showed the piston bowls with inner-convex could disturb the charge swirl motion and enhance turbulence of different intensity. A hexagram geometry bowl was proved to have the best function in strengthening turbulence intensity.
Journal Article

Modeling and Experimental Studies of Crack Propagation in Laminated Glass Sheets

2014-04-01
2014-01-0801
Polyvinyl Butyral (PVB) laminated glass has been widely used in automotive industry as windshield material. Cracks on the PVB laminated glass contain large amount of impact information, which can contribute to accident reconstruction investigation. In this study, the impact-induced in-plane dynamic cracking of the PVB laminated glass is investigated. Firstly, a drop-weight combined with high-speed photography experiment device is set up to investigate the radial cracks propagation on the PVB laminated glass sheet. Both the morphology and the velocity time history curve of the radial cracks are recorded and analyzed to investigate the basic mechanism of the crack propagation process. Afterwards, a three-dimensional laminated plate finite element (FE) model is set up and dynamic cracking process is simulated based on the extended finite element method (XFEM).
Technical Paper

Research on Assist-Steering Method for Distributed-Drive Articulated Heavy Vehicle Based on the Co-Simulation Model

2020-04-14
2020-01-0761
The mathematic model and co-simulation model for distributed-drive articulated heavy vehicles (DAHVs) are developed along with the techniques for its satisfactory verification. The objectives of this paper are to introduce and verify the researches about the assist-steering method for DAHVs. The theory of this proposed assist-steering method in this paper distinguishes it from the traditional direct yaw moment control (DYC) method or assist-steering methods in the previous studies. Furthermore, the co-simulation model developed by MATLAB/Simulink, ADAMS, and AMESim is more reasonable than the traditional methods with simple virtual models, which can replace the real test vehicle for the verification of proposed assist-steering method. Field tests were conducted with a 35t DAHV to verify the models with the comparison of vehicle responses.
Technical Paper

Study on Cavitation Effect of Hydraulic Retarder

2022-09-19
2022-01-1169
Hydraulic retarder is important auxiliary brake device which widely used in commercial vehicles for its economy, safety and driving comfort, however cavitation will occur and reduce the braking performance when hydraulic retarder operates at high speed. In this paper, a model of hydraulic retarder considering cavitation effect was established, and the reliability of the model was verified by comparing with the external characteristics of the product which was obtained from Voith’s official discloses data. Then the cavitation of hydraulic retarder under high-speed working condition was studied by the establishing simulation model. The simulation model can describe and analyze the internal flow field in the hydraulic retarder, and can be used as an important tool for the development and optimization of hydraulic retarder in the future. When hydraulic retarder’s rotational speed is about 1500rpm, the cavitation will be observed in the working chamber.
Technical Paper

The Review of Vehicle Purchase Restriction in China

2020-04-14
2020-01-0972
In the past two decades, rapidly expanding economy in China led to burst in travel demand and pursuit of quality of life. It further promoted the rapid growth of China's passenger car market. China had already become the largest vehicle sales country, exceeding the U.S. in 2010. By the end of 2018, there had been over 240 million cars in China, with over 200 million passenger cars. The surge of car ownership has also brought a series of problems, like traffic congestion, long commuting time, insufficient parking space, etc. Therefore, some local governments in China introduced vehicle purchase restriction policies to control the growth and gross of vehicle stock. Different cities issued different rules. Lottery and auction mechanisms both exist. There are also differences in classification and licensing of electric vehicles. However, with the recent slowdown of economic development, China's car sales began to decline in 2018, and the trend of 2019 is also not optimistic.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
X