Refine Your Search

Topic

Search Results

Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

A Three-Dimensional Flame Reconstruction Method for SI Combustion Based on Two-Dimensional Images and Geometry Model

2022-03-29
2022-01-0431
A feasible method was developed to reconstruct the three-dimensional flame surface of SI combustion based on 2D images. A double-window constant volume vessel was designed to simultaneously obtain the side and bottom images of the flame. The flame front was reconstructed based on 2D images with a slicing model, in which the flame characteristics were derived by slicing flame contour modeling and flame-piston collision area analysis. The flame irregularity and anisotropy were also analyzed. Two different principles were used to build the slicing model, the ellipse hypothesis modeling and deep learning modeling, in which the ellipse hypothesis modeling was applied to reconstruct the flame in the optical SI engine. And the reconstruction results were analyzed and discussed. The reconstruction results show that part of the wrinkled and folded structure of the flame front in SI engines can be revealed based on the bottom view image.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

Design, Testing and Analysis of a Novel Multiple-Disc Magnetorheological Braking Applied in Vehicles

2015-04-14
2015-01-0724
This paper presents a new magnetorheological braking which can be used in vehicles. Magneto-rheological (MR) fluid is a novel material which can be used in different components of vehicle. Magneto-rheological fluids (MRF) are suspensions of micron size whose yield stress varies rapidly as the change of magnetic field. The use of MRF in vehicles has been gaining popular recently due to its strong rheological effect, fast response and low energy consumption. Besides, these performances give designers more choice in automotive designs. However, most of the related research of MRF brake is about the construction of small prototype to verify its rheological performance. As a result, research progress is limited to calculation and simulation which make the braking force of prototype can hardly meet the requirement of vehicle due to a lack of optimal design and the understanding of MRF in the situation of high sheer stress and magnetic field.
Technical Paper

Development of a Legform Impactor with 4-DOF Knee-Joint for Pedestrian Safety Assessment in Omni-Direction Impacts

2011-04-12
2011-01-0085
The issue of car-to-pedestrian impact safety has received more and more attention. For leg protection, a legform impactor with 2 degrees-of-freedom (DOF) proposed by EEVC is required in current regulations for injury assessment, and the Japan Automobile Manufacturers Association Inc. (JAMA) and Japan Automobile Research Institute (JARI) have developed a more biofidelic pedestrian legform since 2000. However, studies show that those existing legforms may not be able to cover some car-to-pedestrian impact situations. This paper documents the development of a new pedestrian legform with 4 DOFs at the knee-joint. It can better represent the kinematics characteristics of human knee-joint, especially under loading conditions in omni-direction impacts. The design challenge is to solve the packaging problem, including design of the knee-joint mechanisms and layout of all the sensors in a limited space of the legform.
Technical Paper

Droplet Measurement of High-Pressure Liquid Ammonia Injection Using PDPA

2023-10-31
2023-01-1637
Liquid ammonia is an ideal zero carbon fuel to reduce carbon emission of internal combustion engines. The high-pressure injection of liquid ammonia is a key technology to fast distribute fuels and prepare better combustion performances. The physical properties of liquid ammonia are different to traditional fossil fuels including diesel and gasoline, which can change the spray and droplet characteristics significantly. However, the spray droplet characteristics of liquid ammonia injection is lack of investigations. In this paper, Phase Doppler Particle Analyzer (PDPA) are used to measure the droplet diameter and velocity of high-pressure liquid ammonia sprays up to 75 MPa and compare to diesel sprays. Effects of flash boiling of liquid ammonia droplet characteristics are also analyzed.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Journal Article

Experimental Studies on Viscoelasticity of Film Materials in Laminated Glass Sheets

2015-04-14
2015-01-0709
Polyvinyl butyral (PVB) film and SentryGlas® Plus (SGP) film have been widely used in automotive windshield and architecture curtain serving as protective interlayer materials. Viscoelasticity is the unique property of such film materials, which can contribute to improving impact resistance and energy absorbing characteristics of laminated glass. In this study, the uniaxial tensile creep and stress relaxation tests are conducted to investigate the viscoelasticity of PVB and SGP films used in laminated glass. Firstly, tensile creep and stress relaxation tests of PVB film (0.76mm) and SGP film with three thickness (0.89mm, 1.14mm and 1.52mm) are conducted using Instron universal testing machine to obtain creep and stress relaxation curves. Afterwards, both viscoelastic models (Burgers model, Maxwell-Weichert model) and empirical equations (Findley power law, Kohlrausch equation) are applied to simulate the creep and stress relaxation results.
Technical Paper

Experimental Study on Diesel Spray Characteristics Using Different Ambient Gases

2016-04-05
2016-01-0867
The spray characteristics is the key to achieve the clean combustion in diesel engines and the in-cylinder conditions are one of the factors affecting the spray process. In this work, the diesel spray characteristics were studied over a range of injection pressures and ambient pressures in a constant volume chamber and a single-hole common rail diesel injector was used. The present work is to decouple the effects of ambient pressure and ambient density on near-field spray processes by using different ambient gas (N2, and CO2). The spray processes were captured by a Photron SA X2 camera with speed of 300,000 fps and resolution of 256 by 80 pixels. The spray processes were analyzed in terms of penetration length and spray tip velocity. Difference in penetration length and tip velocity were found at the same ambient density and/or ambient pressure when different ambient gases were used.
Technical Paper

Head Protection Characteristics of Windshield During Pedestrian-Vehicle Accident

2011-04-12
2011-01-0082
The windshield is one of the most critical vehicle components in terms of pedestrian safety; however, it has not been thoroughly and systematically investigated through combined experimental and theoretical analysis. Firstly, this paper carries out quasi-static experiments on Material Testing System (MTS) and dynamic experiments on Split Hopkinson Pressure Bar (SHPB) and new tests data are obtained. Results indicate that Polyvinyl butyral (PVB)-laminated glass behaves nonlinearly and rate-dependently under various strain rates, from 1x10-⁵s-₁~6x10₃ s-₁. Thus, a constitutive model covering all strain rates is proposed to describe the constitutive behavior of PVB-laminated glass and it fits well with the experimental data. Further, the constitutive relation is embedded into the 3D finite element model of windshield. With the definition of four governing factors and two evaluation indicators, the head protection characteristics of windshield are numerically studied.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
Technical Paper

Integrated Road Information Perception Framework for Road Type Recognition and Adaptive Evenness Assessment

2024-04-09
2024-01-2041
With the rapid advancement in intelligent vehicle technologies, comprehensive environmental perception has become crucial for achieving higher levels of autonomous driving. Among various perception tasks, monitoring road types and evenness is particularly significant. Different road categories imply varied surface adhesion coefficients, and the evenness of the road reflects distinct physical properties of the road surface. This paper introduces a two-stage road perception framework. Initially, the framework undergoes pre-training on a large annotated drivable area dataset, acquiring a set of pre-trained parameters with robust generalization capabilities, thereby endowing the model with the ability to locate road areas in complex regions.
Technical Paper

Investigation into Qualitative Dynamic Characteristics Analysis of Hydraulically Damped Rubber Mount for Vehicle Engine

2009-05-19
2009-01-2132
Hydraulically damped rubber mount (HDM) can effectively attenuate vibrations transmitting between automotive powertrain and body/chassis, and reduce interior noise of car compartment. This paper involves an analytical qualitative analysis approach of dynamics characteristics of HDM. Analysis of experimental results verifies the effectiveness of the qualitative analysis approach. Frequency- and amplitude-dependent dynamic characteristic of HDM are investigated to clarify working mechanism of HDM. The presented qualitative analysis approach provides a convenient performance adjustment guideline of HDM to meet vibration isolation requirements of powertrain mount system.
Technical Paper

Investigation into the Effect of Flame Propagation in the Gasoline Compression Ignition by Coupling G-Equation and Reduced Chemical Kinetics Combustion Model

2015-09-01
2015-01-1799
Gasoline Compression Ignition has been widely studied in recent years. The in-cylinder stratified charge in gasoline Partially Premixed Compression Ignition (PPCI) can extend the high load range with lower pressure rise rate than Homogeneous Charge Compression Ignition (HCCI). However, it is still not clear that whether there is flame propagation in the gasoline compression igntion mode and how the flame propagation influences the combustion process and pollution formation. In order to investigate the effect of flame, several gasoline compression ignition cases, including the single-stage and two-stage heat release processes, are simulated with the KIVA-3V Release 2 code in this study. The G-equation is employed to account for flame propagation, and the reduced i-octane/n-heptane mechanism is used to handle the chemical reactions. The results show that the flame propagation exists in the combustion process and it can accelerate the heat release slightly.
X