Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cost-Effectiveness of a Lightweight Design for 2020-2025: An Assessment of a Light-Duty Pickup Truck

2015-04-14
2015-01-0559
The United States Environmental Protection Agency contracted with FEV North America, Inc. to conduct a whole vehicle analysis of the potential for mass reduction and related cost impacts for a future light-duty pickup truck. The goal was to evaluate the incremental costs of reducing vehicle mass on a body on frame vehicle at levels that are feasible in the 2020 to 2025 model year (MY) timeframe given the design, material, and manufacturing processes likely to be available, without sacrificing utility, performance, or safety. The holistic, vehicle-level approach and body-structure CAE modeling that were demonstrated in a previous study of a mid-sized crossover utility vehicle were used for this study. In addition, evaluations of closures performance, durability, and vehicle dynamics that are unique to pickup trucks are included. Secondary mass reduction was also analyzed on a part by part basis with consideration of vehicle performance requirements.
Technical Paper

Deaeration Device Study for a Hydraulic Hybrid Vehicle

2012-09-24
2012-01-2038
This paper investigates the development of a deaeration device to remove nitrogen from the hydraulic fluid in hydraulic hybrid vehicles (HHVs). HHVs, which use accumulators to store and recycle energy, can significantly reduce vehicle emissions in urban delivery vehicles. In accumulators, nitrogen behind a piston cylinder or inside a bladder pressurizes an incompressible fluid. The permeation of the nitrogen through the rubber bladder into the hydraulic fluid limits the efficiency and reliability of the HHV system, since the pressure drop in the hydraulic fluid can in turn cause cavitation on pump components and excessive noise in the system. The nitrogen bubbles within the hydraulic fluid may be removed through the employment of commercial bubble eliminators if the bubbles are larger than a certain threshold. However, gas is also dissolved within the hydraulic fluid; therefore, novel design is necessary for effective deaeration in the fluid HHV circuit.
Journal Article

Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements

2019-04-02
2019-01-0644
A multi-year, multi-vehicle study was conducted to quantify the aerodynamic drag changes associated with drag reduction technologies for light-duty vehicles. Various technologies were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent winds. The technologies investigated include active grille shutters, production and custom underbody treatments, air dams, wheel curtains, ride height control, side mirror removal and combinations of these. This paper focuses on mean surface-, wake-, and underbody-pressure measurements and their relation to aerodynamic drag. Surface pressures were measured at strategic locations on four sedans and two crossover SUVs.
X