Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analysis of Geo-Location Data to Determine Combat Vehicle Idling Times

2023-04-11
2023-01-0101
As the United States Army strives for electrification and hybridization of tactical and combat vehicles in alignment with its Climate Strategy, it is necessary to capture all aspects of the drive cycle. One key area for consideration is the amount of time that the vehicles spend idling. Indeed, military vehicles can idle for a considerable amount of time, especially given that soldiers must keep their vehicles running to power critical electronic subsystems. Current, standardized drive cycles do not fully capture the degree that military vehicles idle. This study begins to address this gap by analyzing geo-location data collected from the National Training Center (NTC) for several different tactical vehicles including the High Mobility Multipurpose Wheeled Vehicle (HMMWV), the Bradley Fighting Vehicle, and the Abrams Main Battle Tank. This paper details the extraction, cleaning, and analysis of the geo-location data.
Technical Paper

Design Parameters for Small Engines Based on Market Research

2018-09-10
2018-01-1717
Small internal combustion engines outperform batteries and fuel cells in regards to weight for a range of applications, including consumer products, marine vehicles, small manned ground vehicles, unmanned vehicles, and generators. The power ranges for these applications are typically between 1 kW and 10 kW. There are numerous technical challenges associated with engines producing power in this range resulting in low power density and high specific fuel consumption. As such, there is a large range of engine design solutions that are commercially available in this power range to overcome these technical challenges. A market survey was conducted of commercially available engines with power outputs less than 10 kW. The subsequent analysis highlights the trade-offs between power output, engine weight, and specific fuel consumption.
Technical Paper

Determination of Efficiency Losses in Entry Ignition Engines

2021-04-06
2021-01-0441
In 2020, Cheeseman (SAE Paper 2020-01-1314) introduced Entry Ignition (EI) as a potential engine combustion process to rival traditional Spark Ignition (SI) and Compression Ignition (CI). The EI process premixes fuel with compressed air, which then enters a hot cylinder at top dead center, autoigniting upon entry. The original proposed concept for an engine separates the compression and expansion processes allowing for it to be modeled as a 2-stroke Brayton cycle. Theoretically, an EI engine allows for higher compression ratios than SI engines with less emissions than CI engines. However, the original EI engine analysis made several assumptions that merit further investigation. First, the original analysis did not look at the temperatures and pressures in the air/fuel mixing chamber to ensure that it does not autoignite prior to entering the cylinder. Second, the analysis did not account for the large amount of heat transfer associated with keeping half the end-gas in the cylinder.
Technical Paper

Distribution of Knock Frequencies in Modern Engines Compared to Historical Data

2018-09-10
2018-01-1666
It is widely known that the rapid autoignition of end-gas will cause an engine cylinder to resonate, creating a knocking sound. These effects were quantified for a simple engine geometry in 1934 in a study where critical resonance frequencies were identified. That analysis, performed by Charles Draper, still forms the basis of most knock studies. However, the resonance frequencies are highly dependent on the engine geometry and the conditions inside the cylinder at autoignition. Since, engines and fuels operate at substantially different conditions than they did in 1934, it is expected that there should be a shift in knock frequencies. Experimental tests were run to collect knock data in an engine, representative of modern geometries, over a range of operating conditions for a number of different fuels. The operating conditions-intake air temperature, intake air pressure, and engine speed-were varied to identify shifts in the critical frequencies.
Technical Paper

Methods to Increase the Relevancy of the Octane Number Tests

2021-04-06
2021-01-0471
The Octane Number test was unveiled in 1928 with a lukewarm response from the oil and automotive industries. The test represented a noble attempt for capturing the antiknock performance of a fuel given the limited knowledge of knock at the time. The test compares the antiknock performance of a fuel in a test engine to a reference fuel. Though simplistic, the test is ingrained in society and has undergone only minor revision despite dramatic changes in engines and fuels. Many studies have discussed the inadequacies of the test, with recent ones questioning their relevancy. This paper provides an overview of these issues, focusing on how to make the tests relevant to modern engines and fuels. Three techniques are recommended for updating the tests. The first technique adjusts the definition for the antiknock index, which is the “Octane Number” displayed on the fuel pump.
Technical Paper

Modeling and Analysis of Fully Electric and Hydrogen-Powered Bradley Fighting Vehicles

2023-04-11
2023-01-0119
As the U.S. Army moves to electrify portions of its vehicle fleet, it is worth considering the heavier combat vehicles. However, the high power demand of these vehicles coupled with the relatively low energy density of modern batteries result in electric vehicles with limited range and functionality. Hydrogen-based fuel cells are an alternative to batteries that can provide many of the same environmental and logistical benefits associated with electrification. This study models the energy consumption for two variants of the M2A4 Bradley Fighting Vehicle (BFV). The first variant is powered by a hydrogen-based Proton Exchange Membrane Fuel Cell; the second variant is powered through lithium-ion batteries. These models account for vehicle weight, accelerative forces, drag, road grade, tractive losses, and ancillary equipment and are compared against a conventional M2A4 BFV.
X