Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

CMS - An Evolution of the CVS - A Full Flow, Constant Mass Flow, Sampling System

2006-04-03
2006-01-1514
The CMS system commissioned by EPA and built by AVL, is a “start from a clean sheet of paper” approach to a full flow sampling system for aerosol matter from engine exhaust. The challenge of measuring 2007 level post DPF type particulate matter and polyaromatic hydrocarbons led to this re-thinking of sampler design. Previously used CVS designs had evolved to include elements that were not ideally suited for scaling up to large flow rates, and had mixing tunnels that were less than ideal for the sampling of complicated aerosols. The solution presented in this paper used ultrasonic time-of-flight flowmeters in place of the usual Venturi flow tubes, reducing the size and cost of air handling components. Acoustically designed dampeners were used to reduce pulsation disturbances to the flow measurement.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Technical Paper

Dynamometer and On-board Emissions Testing of the Honda Insight and Toyota Prius

2005-04-11
2005-01-0681
As part of the EPA's ongoing in-use vehicle emissions compliance program, two hybrid vehicles were tested. A 2001 Honda Insight and a 2001 Toyota Prius were tested on a chassis dynamometer at the National Vehicle Fuel and Emissions Laboratory. Both vehicles were run on the Federal Test Procedure drive cycle. Emissions were measured simultaneously using the SEMTECH-G Portable Emissions Measurement System (PEMS) for comparison to the chassis dynamometer bench analyzer. The correlation for cumulative emissions (bag) between dynamometer and on-board analyzer were adequate for CO2, CO, and NOx, though the PEMS HC measurements were low by comparison. The measurements were limited by the very low exhaust volume flow rates on both vehicles. A more sensitive flow meter will be required to measure emissions from vehicles certified to SULEV standards.
Technical Paper

Emissions Patterns of Diesel-Powered Passenger Cars

1975-02-01
750682
The gaseous and particulate emissions from a light-duty diesel powered passenger car were measured by a variety of chemical analysis techniques for three different fuels, typical No. 1 and No. 2 commercial diesel fuels and the Federal Register No. 2-D smoke test fuel. Hydrocarbon emissions were found to be inversely related to fuel molecular weight. The NO2/NO ratio was found to be much higher than for gasoline engines approaching 0.3 at low load. Particulate emissions were approximately 0.3 grams/mile for all fuels and driving cycles tested. Sulfate emissions were high, approaching that of some catalyst cars. Sulfate emissions decreased with decreasing fuel sulfur and increased by a factor of two in highway driving over urban driving. The potential pollution problems with such cars are worthy of further study.
Technical Paper

Evaluation of the Bag Mini-Diluter and Direct Vehicle Exhaust Volume System for Low Level Emissions Measurement

2000-03-06
2000-01-0793
With the adoption of the California Low-Emission Vehicle Regulations and the associated lower emission standards such as LEV (Low-Emission Vehicle in 1990), ULEV (Ultra-Low-Emission Vehicle), and LEV II (1998 with SULEV-Super Ultra Low Emission Vehicle), concerns were raised by emissions researchers over the accuracy and reliability of collecting and analyzing emissions measurements at such low levels. The primary concerns were water condensation, optimizing dilution ratios, and elimination of background contamination. These concerns prompted a multi-year research program looking at several new sampling techniques. This paper will describe the cooperative research conducted into one of these new technologies, namely the Bag Mini-Diluter (BMD) and Direct Vehicle Exhaust (DVE) Volume system.
Technical Paper

Fuel Economy and Emissions of a Toyota T-LCS-M Methanol Prototype Vehicle

1987-06-01
871090
The Toyota lean combustion system-methanol (T-LCS-M) is a lean burn methanol combustion system designed to maximize fuel economy and driving performance while minimizing pollutant emissions. Testing at the EPA Motor Vehicle Emissions Laboratory (MVEL) indicates that this system allows relatively low emissions of regulated pollutants and aldehydes when operated on either M100 or M85 methanol fuels under transient driving and evaporative emissions test conditions. Total vehicle hydrocarbon emissions appear lower when the vehicle is operated on M100 rather than M85 fuel. Fuel economy is slightly improved when the system is operated on M85 rather than M100 fuel.
Technical Paper

Heavy-Duty Diesel Truck In-Use Emission Test Program for Model Years 1950 through 1975

2001-03-05
2001-01-1327
Criteria pollutants were measured from ten Class 7 and 8 (i.e., gross vehicle weights > 33,000 lb) heavy-duty diesel trucks with engine model years between 1953 and 1975. The data was used by EPA to estimate that period's particulate matter emission rates for these type engines and will be used to develop dose response relationships with existing epidemiological data. Particulate samples were analyzed for sulfate and volatile organic fraction. Carbon soot was estimated. The trucks had particulate emissions of 2 to 10 g/mi as compared to 1 to 6 g/mi for trucks with model year engines from 1975 through the mid-1980s, and less than 1 g/mi for post-1988 trucks.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Parameters Affecting Direct Vehicle Exhaust Flow Measurement

2003-03-03
2003-01-0781
As SULEV emission regulations approach, the bag mini-diluter (BMD) technology is gaining acceptance as a replacement for the existing constant volume sampler (CVS) for SULEV exhaust emission measurement and certification. The heart of the BMD system is the direct vehicle exhaust (DVE) flow measurement system. Due to the transient nature of vehicle exhaust during a standard FTP emission test cycle, the DVE must be capable of rapid and accurate response in order to track these varying exhaust flow rates. The DVE must also be robust enough to accurately measure flow rate despite variations in exhaust gas composition, pulsation effects, and rapid changes in both exhaust temperature and pressure. One of the primary DVE systems used on BMDs is the E-Flow, an ultrasonic flow meter manufactured by Flow Technologies, Inc.
Technical Paper

Particle Size Distribution from a Heavy-Duty Diesel Engine: Steady-State and Transient Emission Measurement Using Two Dilution Systems and Two Fuels

2003-03-03
2003-01-0285
Particle size distribution and number concentration were measured in the dilute exhaust of a heavy-duty diesel engine for steady-state and transient engine operation using two different dilution systems that included a full flow CVS that was coupled to an ejector pump (CVS-EP), and a double-ejector micro-dilution tunnel (DEMDT) that was connected to engine exhaust close to turbocharger outlet. Measurements were performed using a scanning mobility particle sizer (SMPS), an electrical low pressure impactor (ELPI), and a parallel flow diffusion battery (PFDB). Fuels with sulfur content of about 385 ppm and 1 ppm were used for this work. The PFDB performed well in measuring nanoparticles in the size range below 56 nm when compared with the SMPS. This was especially valid when a distinct log-normal size distribution in the size range below 56 nm in diameter, the upper size limit of the PFDB, was present.
Technical Paper

Using a Vehicle Exhaust Emission Simulator (VEES) as a Cross Check Tool for Emission Test Cell Correlation

2005-04-11
2005-01-0687
It is becoming increasingly difficult to obtain good repeatability from running lab vehicle correlation testing, since vehicle variability is so significant at the Low ULEV and SULEV emissions levels. These new emission standards are becoming so stringent that it makes it very difficult to distinguish whether a problem is a result of vehicle variability, test cell sampling or the analytical system. A vehicle exhaust emission simulator (VEES) developed by Horiba, can simulate emissions from low emitting gasoline vehicles by producing tailpipe flow rates containing emissions constituents ( HC, CH4, CO, NOx, CO2 ) injected at the tailpipe flow stream via mass flow controllers.
Technical Paper

Vehicle Exhaust Emissions Simulator- A Quality Control Tool to evaluate the Performance of Low Level Emission Sampling and Analytical Systems

2003-03-03
2003-01-0391
As the standards for exhaust emissions have become more stringent, the quality control tools used to evaluate the performance of low level samplers and analyzers has become more important. The Vehicle Exhaust Emissions Simulator (VEES) was developed to evaluate the performance of vehicle or engine exhaust emissions sampling and analytical systems. The simulator emulates emissions from low-emitting gasoline vehicles by producing a simulated exhaust stream containing emission constituents (HC, CO, CO2, and NOx) injected via Mass Flow Controllers (MFCs). This paper discusses various applications of the VEES as a quality control tool for ULEV and SULEV testing. A comparison is made between the injected amount of exhaust species by the VEES and the amounts recovered by the different sampling systems. Different root cause scenarios are discussed as to the source of discrepancies between the results on the CVS and BMD for different driving cycles.
X