Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

CAN Communication Applying on the Performance Evaluating of Electronic Brake System for Commercial Vehicle

2006-10-31
2006-01-3582
In the performance evaluating of Electronic Brake System, conventional test methods have some inconvenience in existence. For example, the fixing of pressure sensors and wheel speed sensors is restrained by the installation position, and the precision of measuring is prone to be affected by the environment conditions. Since Electronic Brake System is featured by CAN (Controller Area Network) communication, special testing instrument can be connected with CAN bus, monitoring signals transmitting on the bus. This paper outlines the results of the study performed to analyze the application of CAN communication in the way of performance evaluation of Electronic Braking System.
Technical Paper

Fault Tolerant Control Against Actuator Failures of 4WID/4WIS Electric Vehicles

2013-04-08
2013-01-0405
A fault tolerant control (FTC) approach based on reconfigurable control allocation for four-wheel independently driven and steered (4WID/4WIS) electric vehicles against driving motor failures is proposed in order to improve vehicle safety, performance and maneuverability after the driving motor failures. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using model predictive control method; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels aiming at minimizing the total tire usage. The FTC approach is based on the reconfigurable control allocation which reallocates the generalized forces/moments among healthy actuators once the actuator failures is detected.
Journal Article

GPS Modeling for Vehicle Intelligent Driving Simulation

2018-04-03
2018-01-0763
In recent years, intelligent vehicles have become one of the major research topics in vehicle engineering and have created a new opportunity for the automotive industry. Simulation and real experiment are both essential to the development of intelligent vehicle technologies. Vehicle positioning systems, such as global positioning system (GPS), play an important role in intelligent vehicle development. The GPS model plays a major part in the development of intelligent vehicle simulation systems. Primarily focusing on application requirements of intelligent vehicle simulation platforms for GPS sensor modeling, considering the major factors affecting positioning accuracy in vehicle driving environments, this article establishes a new GPS model and algorithm based on the physical and functional characteristics of GPS. As the basis of this model system, a precise ephemeris model is established to obtain the coordinates of GPS satellites at any given time.
Technical Paper

High-Precision Autonomous Parking Localization System based on Multi-Sensor Fusion

2024-04-09
2024-01-2843
This paper addresses the issues of long-term signal loss in localization and cumulative drift in SLAM-based online mapping and localization in autonomous valet parking scenarios. A GPS, INS, and SLAM fusion localization framework is proposed, enabling centimeter-level localization with wide scene adaptability at multiple scales. The framework leverages the coupling of LiDAR and Inertial Measurement Unit (IMU) to create a point cloud map within the parking environment. The IMU pre-integration information is used to provide rough pose estimation for point cloud frames, and distortion correction, line and plane feature extraction are performed for pose estimation. The map is optimized and aligned with a global coordinate system during the mapping process, while a visual Bag-of-Words model is built to remove dynamic features.
Technical Paper

Lidar Inertial Odometry and Mapping for Autonomous Vehicle in GPS-Denied Parking Lot

2020-04-14
2020-01-0103
High-precision and real-time ego-motion estimation is vital for autonomous vehicle. There is a lot GPS-denied maneuver such as underground parking lot in urban areas. Therefore, the localization system relying solely on GPS cannot meets the requirements. Recently, lidar odometry and visual odometry have been introduced into localization systems to overcome the problem of missing GPS signals. Compared with visual odometry, lidar odometry is not susceptible to light, which is widely applied in weak-light environments. Besides, the autonomous parking is highly dependent on the geometric information around the vehicle, which makes building map of surroundings essential for autonomous vehicle. We propose a lidar inertial odometry and mapping. By sensor fusion, we compensate for the drawback of applying a single sensor, allowing the system to provide a more accurate estimate.
Technical Paper

Model Predictive Control of Turbocharged Gasoline Engines for Mass Production

2018-04-03
2018-01-0875
This paper describes the design of a multivariable, constrained Model Predictive Control (MPC) system for torque tracking in turbocharged gasoline engines scheduled for production by General Motors starting in calendar year 2018. The control system has been conceived and co-developed by General Motors and ODYS. The control approach consists of a set of linear MPC controllers scheduled in real time based on engine operating conditions. For each MPC controller, a linear model is obtained by system identification with data collected from engines. The control system coordinates throttle, wastegate, intake and exhaust cams in real time to track a desired engine torque profile, based on measurements and estimates of engine torque and intake manifold pressure.
Technical Paper

Personalized Adaptive Cruise Control Considering Drivers’ Characteristics

2018-04-03
2018-01-0591
In order to improve drivers’ acceptance to advanced driver assistance systems (ADAS) with better adaptation, drivers’ driving behavior should play key role in the design of control strategy. Adaptive cruise control systems (ACC) have many factors that can be influenced by different driving behavior. It is important to recognize drivers’ driving behavior and take human-like parameters to the adaptive cruise control systems to assist different drivers effectively via their driving characteristics. The paper proposed a method to recognize drivers’ behavior and intention based on Gaussian Mixture Model. By means of a fuzzy PID control method, a personalized ACC control strategy was designed for different kinds of drivers to improve the adaptabilities of the systems. Several typical testing scenarios of longitudinal case were created with a host vehicle and a traffic vehicle.
Journal Article

Real World NOx Sensor Accuracy Assessment and Implications for REAL NOx Tracking

2021-04-06
2021-01-0593
The REAL NOx regulation requires tracking and reporting of NOx emissions starting in 2022MY for both medium-duty and heavy-duty diesel vehicles with potential to be considered during the next light-duty rulemaking. The regulation includes minimum NOx mass measurement accuracy requirements of either +/−20 percent or +/− 0.1 g/bhp-hr. Existing NOx sensor technology may not be able to meet the regulated accuracy requirements especially when exposed to other sources of variation within the emissions control system. This paper provides an assessment of real-world NOx sensor accuracy and the impact of other sources of variation and noise factors on NOx measurement accuracy. Noise factors investigated include NOx sensor tolerance, exhaust flow rate estimation, NOx sensor ammonia (NH3) cross sensitivity, mass air flow (MAF) sensor accuracy, NOx sensor placement, and laboratory emissions measurement capability.
Journal Article

Real-Time Monitoring of Tire Condition with Fast Detection Passive and Wireless TPMS

2023-04-11
2023-01-0749
Accurate tire pressure monitoring system (TPMS) is of great practical importance and the reliability and safety of its power supply module has great concern. The piezoelectric-based surface acoustic wave (SAW) sensor is considered to have great potential in this field because of its passive, wireless and small size advantages. This paper presents the application of passive and wireless SAW sensors for real-time tire condition monitoring. The pressure sensitive structure is optimized and a three-resonator structure is also designed sensing temperature and pressure. Furthermore, a fast detection system is developed to realize high-speed signal acquisition. At last, experiments are executed and the SAW temperature and pressure sensor property is measured.
Journal Article

Research on Automatic Joint Calibration Method of Multi 3D-LIDARs and Inertial Measurement Unit

2021-04-06
2021-01-0070
In the field of automatic driving, the combination of 3D LIDAR and inertial measurement unit (IMU) is a common sensor configuration scheme in laser point-cloud localization, high-precision map making and point-cloud target detection. So it is critical to calibrate LIDAR and IMU accurately. At present, due to the large volume and high cost of 3D LIDAR with high-line-number(Such as 64 lines or 128 lines), the configuration scheme of using multiple low-line-number 3D LIDARs appears in the automatic driving vehicle sensing system. However, the common calibration methods are not suitable for multi 3D LIDARs and IMU parameters calibration on autonomous vehicle, which have the disadvantages of cumbersome implementation and low accuracy. In this paper, a joint calibration test platform composed of dual LIDARs and IMU is assembled, and a method of precise automatic calibration based on GPS/RTK data is proposed.
Technical Paper

Road Recognition Technology Based on Intelligent Tire System Equipped with Three-Axis Accelerometer

2024-04-09
2024-01-2295
Under complex and extreme operating conditions, the road adhesion coefficient emerges as a critical state parameter for tire force analysis and vehicle dynamics control. In contrast to model-based estimation methods, intelligent tire technology enables the real-time feedback of tire-road interaction information to the vehicle control system. This paper proposes an approach that integrates intelligent tire systems with machine learning to acquire precise road adhesion coefficients for vehicles. Firstly, taking into account the driving conditions, sensor selection is conducted to develop an intelligent tire hardware acquisition system based on MEMS (Micro-Electro-Mechanical Systems) three-axis acceleration sensors, utilizing a simplified hardware structure and wireless transmission mode. Secondly, through the collection of real vehicle experiment data on different road surfaces, a dataset is gathered for machine learning training.
Journal Article

Rotational Vibration Test Apparatus for Laser Vibrometer Verification

2021-08-31
2021-01-1096
Prior to making rotational vibration measurements with a laser vibrometer, it is good practice to establish that the instrument is operating properly. This can be accomplished by comparative measurement of a rotational vibration source with known amplitude and frequency. This paper describes the design and development of a rotational vibration apparatus with known amplitude and frequency to be used as a reference for comparison to concurrent and co-located measurements made by a rotational laser vibrometer (RLV). The comparative measurements acquired with the apparatus are helpful to verify proper laser vibrometer operation in between regular calibration intervals, and/or whenever the functionality of the vibrometer is suspect. In the subject apparatus, a Cardan shaft with variable input speed and angle is used to provide output torsional vibration with variable frequency and amplitude.
Technical Paper

Steering Angle Safety Control for Redundant Steering System Considering Motor Winding’s Various Faults

2024-04-09
2024-01-2520
Reliable and safe Redundant Steering System (RSS) equipped with Dual-Winding Permanent Magnet Synchronous Motor (DW-PMSM) is considered an ideal actuator for future autonomous vehicle chassis. The built-in DW-PMSM of the RSS is required to identify various winding’s faults such as disconnection, open circuit, and grounding. When achieving redundant control through winding switching, it is necessary to suppress speed fluctuations during the process of winding switching to ensure angle control precision. In this paper, a steering angle safety control for RSS considering motor winding’s faults is proposed. First, we analyze working principle of RSS. Corresponding steering system model and fault model of DW-PMSM have been established. Next, we design the fault diagnosis and fault tolerance strategy of RSS.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
X