Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment Approaches of Automobile Frontal Crash Pulse

2018-07-09
2018-01-5024
This article presents three assessment approaches of automobile frontal crash pulse by using data from the National Highway Traffic Safety Administration (NHTSA) database (56 km/h frontal crash tests). A direct relationship between structural characteristics and automobile safety is established in the study. In the first approach, the crash pulse criterion is improved in the form of a spider diagram based on the star rating. In the second approach, the crash pulse comprehensive evaluation index (PI) is built by weighting function and correlation analysis between pulse parameters and occupant injury risk indexes. In the final approach, a prediction model for major occupant injury risks and indexes which can be regard as an additional evaluation method of crash pulse quality is built by the multiple linear regression method.
Technical Paper

Optimized Ride-Down Rate Control in Frontal Impact and its Application in the Energy Management of Occupant Restraint System

2013-04-08
2013-01-0760
This paper presents an analytic approach to determining the optimized ride-down rate-the relative amount of occupant kinetic energy dissipated in vehicle structure deformation, and attempts to address the question of how the desired ride-down rate could be realized in vehicle design. In this paper the ride-down rate is divided by a critical ride-down rate value into two areas: a positive-effect-area where an increase of ride-down rate will lead to a decrease in the occupant injury level, and a negative-effect-area where an increase in ride-down rate could lead to an increase in the occupant injury level. The critical ride-down rate is found to occur at around 50% for a sedan class vehicle frontal crash into a rigid barrier at 56 km/h of NCAP test setup. The critical ride-down rate can also be estimated with various constraints such as occupant injury levels, vehicle categories and crash modes.
X