Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Development of DME Engine for Heavy-duty Truck

2006-04-03
2006-01-0052
In recent years, attention has focused on smokeless, sulfur-free dimethyl ethyl (DME) as a clean fuel for heavy-duty diesel vehicles [1]. In this development, the DME engine applied for 20-ton GVW truck was developed under the auspices of the Ministry of Land, Infrastructure and Transport of Japan, the first known instance worldwide. With careful design of the fuel system considering DME's unique fuel characteristics and suitable combustion improvement, higher torque was obtained with DME, compared to diesel fueling. and also use of the proper EGR and catalyst, exhaust emissions levels were generally less than one-fourth of new long-term regulation value promulgated in 2005 Japan.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

2001-09-24
2001-01-3634
In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Effects of Injection Pressure on Combustion of a Heavy Duty Diesel Engine With Common Rail DME Injection Equipment

2004-06-08
2004-01-1864
Recently there has been much interest in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, which makes it eminently suitable for compression engines. According to the latest engine test results, however, DME engine energy consumption was inferior to a diesel engine's under a heavy load. DME probably requires strong air-fuel mixing and short fuel injection. Some tests have reported that DME engine performance almost equals a diesel engine's by injecting high rail pressure DME into standard or slightly modified diesel common rail injection equipment. The effect, however, of higher injection pressure on the rates of heat release and spray distribution is unclear. In this study the rail pressure levels examined included 20, 25, 30, and 35 MPa. The results obtained from a single cylinder heavy-duty engine test show that the rate of heat release increases during the premixed combustion phase.
Technical Paper

Improvements on the Start Performance of Diesel Engine by Fuel Control Strategy Optimization and Heating Measures

2008-06-23
2008-01-1646
The incomplete combustion and misfire of diesel engine during starting result in unwanted white smoke. The histories of combustion and emission in different phases under different start conditions were studied in this paper. The optimization of the fuel injection control strategy under start conditions was performed. When the diesel engine is started under low temperature, the control strategy adapted to start the engine with a certain constant fuel mass injected per cycle, there may be misfire cycles in the initial period or in the transitional process, which is mainly caused by the mismatch between the fuel mass injected per cycle and the instantaneous engine speed. Therefore, an optimized control strategy was put forward, namely, the engine starts with high fuel mass injection in the first several cycles and then decreases step by step during the transitional period until it operates at idle condition. This strategy was validated to decrease significantly the misfire cycles.
Technical Paper

Investigation of Cold-start Based on Cycle-by-Cycle Control Strategy in an EFI LPG Engine

2004-10-25
2004-01-3059
This paper presents an investigation of cold starts based on a cycle-by-cycle control strategy in an LPG EFI engine. Experiments were carried out in a four-stroke, water-cooled, single cylinder, 125cc SI engine with an EFI system. Effects of the first injection pulse width and the first combustion cycle on the characteristics of the cold-start were analyzed based on the histories of transient engine speeds and cylinder pressures. The study focuses on how to realize the controllable ignition cycle and the single-cycle and multi-cycle combustions were tested based on the single starting injection pulse width. Test results show that the first combustion cycle has an important effect on HC emission and combustion stability of following cycles at cold-start. The injection pulse width is the key factor determining the characteristics of an ignition cycle during the cold-start.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
X