Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Preliminary Study of Virtual Humidity Sensors for Vehicle Systems

2014-04-01
2014-01-1156
New vehicle control algorithms are needed to meet future emissions and fuel economy mandates that are quite likely to require a measurement of ambient specific humidity (SH). Current practice is to obtain the SH by measurement of relative humidity (RH), temperature and barometric pressure with physical sensors, and then to estimate the SH using a fit equation. In this paper a novel approach is described: a system of neural networks trained to estimate the SH using data that already exists on the vehicle bus. The neural network system, which is referred to as a virtual SH sensor, incorporates information from the global navigation satellite system such as longitude, latitude, time and date, and from the vehicle climate control system such as temperature and barometric pressure, and outputs an estimate of SH. The conclusion of this preliminary study is that neural networks have the potential of being used as a virtual sensor for estimating ambient and intake manifold's SH.
Journal Article

An Eyellipse for Rear Seats with Fixed Seat Back Angles

2011-04-12
2011-01-0596
This paper describes the development of the fixed seat eyellipse in the October 2008 revision of SAE Recommended Practice J941. The eye locations of 23 men and women with a wide range of stature were recorded as they sat in each of three second-row bench seats in a laboratory mockup. Testing was conducted at 19-, 23-, and 27-degree seat back angles. Regression analysis demonstrated that passenger eye location was significantly affected by stature and by seat back angle. The regression results were used to develop an elliptical approximation of the distribution of adult passenger eye locations, applying a methodology previously used to develop the driver eyellipse in SAE J941-2002.
Technical Paper

CFD Modeling of Squeeze Film Flow in Wet Clutch

2011-04-12
2011-01-1236
An oil-lubricated wet clutch has a direct impact on the drivability and fuel economy of a vehicle equipped with an automatic transmission system. However, a reliable analysis of clutch behavior still remains a challenge. The purpose of this study is to advance the state-of the-art in CFD methodology for modeling transient clutch behavior. First, a new iterative scheme is developed, in combination with commercial CFD software, which is capable of simulating the squeeze film process in a wet clutch. The numerical results are then validated using analytical solutions of the Reynolds equation for simplified clutch geometry and various boundary conditions. It is found that the choice of boundary conditions has a strong influence on squeeze film simulation. The iterative scheme is further validated by comparison to clutch engagement experiments.
Journal Article

Driver Preference for Fore-Aft Steering Wheel Location

2013-04-08
2013-01-0453
The fore-aft location of the steering wheel relative to the pedals is a critical determinant of driving posture and comfort. Current SAE practices lack quantitative guidance on steering wheel positioning. This paper presents a model of subjective preference for fore-aft steering wheel position across a range of seat heights. Sixty-eight men and women evaluated the steering wheel positions in a total of 9 package conditions differentiated by seat height and fore-aft steering wheel position. Numerical responses were given on a 7-point scale anchored with the words “Too Close”, “Just Right”, and “Too Far”. A statistical analysis of the results demonstrated that the preferred fore-aft steering wheel position was affected by seat height and driver stature. An ordinal logistic regression model was created that predicts the distribution of subjective responses to steering wheel location. The model can be used to calculate the preferred steering wheel position for individuals or populations.
Technical Paper

Energy Management Options for an Electric Vehicle with Hydraulic Regeneration System

2011-04-12
2011-01-0868
Energy security and climate change challenges provide a strong impetus for investigating Electric Vehicle (EV) concepts. EVs link two major infrastructures, the transportation and the electric power grid. This provides a chance to bring other sources of energy into transportation, displace petroleum and, with the right mix of power generation sources, reduce CO₂ emissions. The main obstacles for introducing a large numbers of EVs are cost, battery weight, and vehicle range. Battery health is also a factor, both directly and indirectly, by introducing limits on depth of discharge. This paper considers a low-cost path for extending the range of a small urban EV by integrating a parallel hydraulic system for harvesting and reusing braking energy. The idea behind the concept is to avoid replacement of lead-acid or small Li-Ion batteries with a very expensive Li-Ion pack, and instead use a low-cost hydraulic system to achieve comparable range improvements.
Technical Paper

Fuel Efficiency Estimates for Future Light Duty Vehicles, Part A: Engine Technology and Efficiency

2016-04-05
2016-01-0906
This study evaluates powertrain technologies capable of reducing light duty vehicle fuel consumption for compliance with 2025 CAFE standards. A fully integrated GT-Power engine model with physics based sub-models was developed to capture any positive or negative synergies between the technologies. The two zone multi-cylinder engine model included typical thermodynamic subroutines, with predictive combustion, flame quench and knock models, along with map-based turbocharger models to capture key combustion and efficiency behaviors. The engine model was calibrated to data from a boosted GDI engine and exercised through one series of current and production viable technology configurations for 2025 regulations.
Technical Paper

Fuel Efficiency Estimates for Future Light Duty Vehicles, Part B: Powertrain Technology and Drive Cycle Fuel Economy

2016-04-05
2016-01-0905
This study evaluates the fuel economy implication of powertrain technologies capable of reducing light duty vehicle fuel consumption for compliance with 2025 CAFE standards. In a companion paper, a fully integrated GT-Power engine model was used to evaluate the effectiveness of one plausible series of engine technologies, including valve train improvements such as dual cam phasing and discrete variable valve lift, and engine downsizing with turbocharging and cooled EGR. In this paper, those engine efficiency/performance results are used in a vehicle drive cycle simulation to estimate the impact of engine and transmission technology improvements on light duty vehicle fuel consumption/economy over the EPA’s FTP and HWY test schedules. The model test vehicle is a midsized sedan based on the MY2012 Ford Fusion.
Technical Paper

Hydraulic Hybrid Powertrain-In-the-Loop Integration for Analyzing Real-World Fuel Economy and Emissions Improvements

2011-09-13
2011-01-2275
The paper describes the approach, addresses integration challenges and discusses capabilities of the Hybrid Powertrain-in-the-Loop (H-PIL) facility for the series/hydrostatic hydraulic hybrid system. We describe the simulation of the open-loop and closed-loop hydraulic hybrid systems in H-PIL and its use for concurrent engineering and development of advanced supervisory strategies. The configuration of the hydraulic-hybrid system and details of the hydraulic circuit developed for the H-PIL integration are presented. Next, software and hardware interfaces between the real components and virtual systems are developed, and special attention is given to linking component-level controllers and system-level supervisory control. The H-PIL setup allows imposing realistic dynamic loads on hydraulic pump/motors and accumulator based on vehicle driving schedule.
Journal Article

Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in Heavy-Duty HEVs

2011-09-13
2011-01-2253
Electrification and hybridization show great potential for improving fuel economy and reducing emission in heavy-duty vehicles. However, high battery cost is unavoidable due to the requirement for large batteries capable of providing high electric power for propulsion. The battery size and cost can be reduced with advanced battery control strategies ensuring safe and robust operation covering infrequent extreme conditions. In this paper, the impact of such a battery control strategy on battery sizing and fuel economy is investigated under various military and heavy-duty driving cycles. The control strategy uses estimated Li-ion concentration information in the electrodes to prevent battery over-charging and over-discharging under aggressive driving conditions. Excessive battery operation is moderated by adjusting allowable battery power limits through the feedback of electrode-averaged Li-ion concentration estimated by an extended Kalman filter (EKF).
Journal Article

Mass Benchmarking Using Statistical Methods Applied to Automotive Closures

2015-04-14
2015-01-0574
Understanding the lightweighting potential of materials is important in making strategic decisions for material selection for a new vehicle program. Frequently benchmarking is done to support these decisions by selecting a reference vehicle which is believed to be mass efficient, then using the teardown mass data to set targets for the vehicle under design. In this work, rather then considering a single benchmark vehicle or a small set of vehicles, we looked at a large sample of vehicles over a range of sizes and segments (approximately 200 vehicles). Statistical methods were used to identify mass drivers for each subsystem. Mass drivers are the attributes of the vehicle and subsystem which determine subsystem mass. Understanding mass-drivers allows comparisons across vehicle size, segments, and materials. Next, we identified those vehicles which had subsystems which were much lighter than the average after adjusting for mass drivers. This set was defined as mass-efficient designs.
Technical Paper

Self-Learning Neural Controller for Hybrid Power Management Using Neuro-Dynamic Programming

2011-09-11
2011-24-0081
A supervisory controller strategy for a hybrid vehicle coordinates the operation of the two power sources onboard of a vehicle to maximize objectives like fuel economy. In the past, various control strategies have been developed using heuristics as well as optimal control theory. The Stochastic Dynamic Programming (SDP) has been previously applied to determine implementable optimal control policies for discrete time dynamic systems whose states evolve according to given transition probabilities. However, the approach is constrained by the curse of dimensionality, i.e. an exponential increase in computational effort with increase in system state space, faced by dynamic programming based algorithms. This paper proposes a novel approach capable of overcoming the curse of dimensionality and solving policy optimization for a system with very large design state space.
Technical Paper

The Potential of Lightweight Materials and Advanced Combustion Engines to Reduce Life Cycle Energy and Greenhouse Gas Emissions

2014-04-01
2014-01-1963
As lightweight materials and advanced combustion engines are being used in both conventional and electrified vehicles with diverse fuels, it is necessary to evaluate the individual and combined impact of these technologies to reduce energy and greenhouse gas (GHG) emissions. This work uses life cycle assessment (LCA) to evaluate the total energy and GHG emissions for baseline and lightweight internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) when they are operated with baseline and advanced gasoline and ethanol engines. Lightweight vehicle models are evaluated with primary body-in-white (BIW) mass reductions using aluminum and advanced/high strength steel (A/HSS) and secondary mass reductions that include powertrain re-sizing. Advanced engine/fuel strategies are included in the vehicle models with fuel economy maps developed from single cylinder engine models.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
X