Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

A Comparison between Different Moving Grid Techniques for the Analysis of the TCC Engine under Motored Conditions

2019-04-02
2019-01-0218
The accurate representation of Internal Combustion Engine (ICE) flows via CFD is an extremely complex task: it strongly depends on a combination of highly impacting factors, such as grid resolution (both local and global), choice of the turbulence model, numeric schemes and mesh motion technique. A well-founded choice must be made in order to avoid excessive computational cost and numerical difficulties arising from the combination of fine computational grids, high-order numeric schemes and geometrical complexity typical of ICEs. The paper focuses on the comparison between different mesh motion technologies, namely layer addition and removal, morphing/remapping and overset grids. Different grid strategies for a chosen mesh motion technology are also discussed. The performance of each mesh technology and grid strategy is evaluated in terms of accuracy and computational efficiency (stability, scalability, robustness).
Technical Paper

A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation

2017-10-08
2017-01-2196
High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

A Matrix-Based Porous Tube Water and Nutrient Delivery System

1992-07-01
921390
A system was developed which provides nutrients and water to plants while maintaining good aeration at the roots and preventing water from escaping in reduced gravity. The nutrient solution is circulated through porous tubes under negative pressure and moves through the tube wall via capillary forces into the rooting matrix, establishing a non-saturated condition in the root zone. Tests using prototypes of the porous tube water and nutrient delivery system indicate that plant productivity in this system is equivalent to standard soil and solution culture growing procedures. The system has functioned successfully in short-term microgravity during parabolic flight tests and will be flown on the space shuttle. Plants are one of the components of a bioregenerative life support system required for long duration space missions.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
Technical Paper

A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion

2001-03-05
2001-01-1027
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers.
Technical Paper

A Simple CFD Model for Knocking Cylinder Pressure Data Interpretation: Part 1

2021-09-05
2021-24-0051
Knock is one of the main limitations on Spark-Ignited (SI) Internal Combustion Engine (ICE) performance and efficiency and so has been the object of study for over one hundred years. Great strides have been made in terms of understanding in that time, but certain rather elementary practical problems remain. One of these is how to interpret if a running engine is knocking and how likely this is to result in damage. Knocking in a development environment is typically quantified based on numerical descriptions of the high frequency content of a cylinder pressure signal. Certain key frequencies are observed, which Draper [1] explained with fundamental acoustic theory back in 1935. Since then, a number of approaches of varying complexity have been employed to correlate what is happening within the chamber with what is measured by a pressure transducer.
Technical Paper

A Study on Automatic Transmission System Optimization Using a HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0977
This Paper introduces a modular, flexible and user-friendly dynamic powertrain model of the US Army's High Mobility Multi-Wheeled Vehicle (HMMWV). It includes the DDC 6.5L diesel engine, Hydra-matic 4L80-E automatic transmission, Torsen differentials, transfer case, and flexible drive and axle shafts. This model is used in a case study on transmission optimization design to demonstrate an application of the model. This study shows how combined optimization of the transmission hardware (clutch capacity) and control strategy (shift time) can be explored, and how the models can help the designer understand dynamic interactions as well as provide useful design guidance early in the system design phase.
Technical Paper

A Transient Heat Transfer System for Research Engines

2007-04-16
2007-01-0975
An ongoing goal of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison has been to expand and improve the ability of the single cylinder internal combustion research engine to represent its multi-cylinder engine counterpart. To date, the PCRL single cylinder engine test system is able to replicate both the rotational dynamics (SAE #2004-01-0305) and intake manifold dynamics (SAE #2006-01-1074) of a multi cylinder engine using a single cylinder research engine. Another area of interest is the replication of multi-cylinder engine cold start emissions data with a single-cylinder engine test system. For this replication to occur, the single-cylinder engine must experience heat transfer to the engine coolant as if it were part of a multi-cylinder engine, in addition to the other multi-cylinder engine transient effects.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

A/F Ratio Visualization in a Diesel Spray

1994-03-01
940680
We have applied an imaging system to a spray in an engine-fed combustion bomb to investigate some of the features of diesel spray ignition. A high pressure electronic unit injector with main and pilot injection features was used. Our interest in this work was the local air/fuel ratio, particularly in the vicinity of the spray plumes. The measurement was made by seeding the air in the intake manifold with biacetyl. A tripled ND:YAG laser causes the biacetyl to fluoresce with a signal that is proportional to its local concentration. The biacetyl partial pressure was carefully controlled, enabling approximate estimates of the local stoichiometry in the fuel spray. Twenty-four different cases were sampled. Parameters varied include swirl ratio, fuel quantity, number of holes in the fuel nozzle and distribution of fuel quantities in the pilot and main injections. This paper presents the results of three of these cases.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

2011-09-11
2011-24-0028
The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Technical Paper

An Analytical Assessment of the CO2 Emissions Benefit of Two-Stroke Diesel Engines

2016-04-05
2016-01-0659
Two-stroke diesel engines could be a promising solution for reducing carbon dioxide (CO2) emissions from light-duty vehicles. The main objective of this study was to assess the potential of two-stroke engines in achieving a substantial reduction in CO2 emissions compared to four-stroke diesel baselines. As part of this study 1-D models were developed for loop scavenged two-stroke and opposed piston two-stroke diesel engine concepts. Based on the engine models and an in-house vehicle model, projections were made for the CO2 emissions for a representative light-duty vehicle over the New European Driving Cycle and the Worldwide Harmonized Light Vehicles Test Procedure. The loop scavenged two-stroke engine had about 5-6% lower CO2 emissions over the two driving cycles compared to a state of the art four-stroke diesel engine, while the opposed piston diesel engine had about 13-15% potential benefit.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

An Experimental and Numerical Study of Sprays from a Common Rail Injection System for Use in an HSDI Diesel Engine

1998-02-23
980810
An experimental and numerical characterization has been conducted of a high-pressure common rail diesel fuel injection system. The experimental study was performed using a common rail system with the capability of producing multiple injections within a single cycle. The injector used in the experiments had a single guided multi-hole nozzle tip. The diesel sprays were injected into a pressurized chamber with optical access at ambient temperature. The gas density in the chamber was representative of the density in an HSDI diesel engine at the time of injection. Single, pilot, and multiple injection cases were studied at different rail pressures and injection durations. Images of the transient sprays were obtained with a high-speed digital camera. From these images spray tip penetration and cone angles were obtained directly. Also spray droplet sizes were derived from the images using a light extinction method (LEM).
X