Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

CFD Optimization of n-Butanol Mixture Preparation and Combustion in an Research GDI Engine

2017-09-04
2017-24-0063
The recent interest in alternative non-fossil fuels has led researchers to evaluate several alcohol-based formulations. However, one of the main requirements for innovative fuels is to be compatible with existing units’ hardware, so that full replacement or smart flexible-fuel strategies can be smoothly adopted. n-Butanol is considered as a promising candidate to replace commercial gasoline, given its ease of production from bio-mass and its main physical and chemical properties similar to those of Gasoline. The compared behavior of n-butanol and gasoline was analyzed in an optically-accessible DISI engine in a previous paper [1]. CFD simulations explained the main outcomes of the experimental campaign in terms of combustion behavior for two operating conditions. In particular, the first-order role of the slower evaporation rate of n-butanol compared to gasoline was highlighted when the two fuels were operated under the same injection phasing.
Journal Article

Comparison between 2 and 4-Stroke Engines for a 30 kW Range Extender

2014-11-11
2014-32-0114
The paper compares two different design concepts for a range extender engine rated at 30 kW at 4500 rpm. The first project is a conventional 4-Stroke SI engine, 2-cylinder, 2-valve, equipped with port fuel injection. The second is a new type of 2-Stroke loop scavenged SI engine, featuring a direct gasoline injection and a patented rotary valve for enhancing the induction and scavenging processes. Both power units have been virtually designed with the help of CFD simulation. Moreover, for the 2-Stroke engine, a prototype has been also built and tested at the dynamometer bench, allowing the authors to make a reliable theoretical comparison with the well assessed 4-Stroke unit.
Technical Paper

Design of ACHEON Thrust and Vector Propulsion System

2015-09-15
2015-01-2425
This paper focuses on the calculation methodology of the thrust of a ACHEON propulsion system, which is based on Coanda effect deflection of thrust. It defines a calculation methodology based on integral equations. The proposed methodology allows an effective calculation of the performances and the force applied on the airplane by such a propulsion system. It will also allow an effective design of the nozzle system and will implement also internal elements with an accurate definition of frictional losses. Outstanding results have been obtained together with general rules for implanting ACHEON propulsion inside an aircraft.
Technical Paper

Design of a Novel 2-Stroke SI Engine for Hybrid Light Aircraft

2021-09-21
2021-01-1179
The trend of powertrain electrification is quickly spreading from the automotive field into many other sectors. For ultra-light aircraft, needing a total installed propulsion power up to 150 kW, the combination of a specifically developed internal combustion engine (ICE) integrated with a state-of-the-art electric system (electric motor, inverter and battery) appears particularly promising. The dimensions and weight of ICE can be strongly reduced (downsizing), so that it can operate at higher efficiency at typical cruise conditions; a large power reserve is available for emergency maneuvers; in comparison to a full electric airplane, the hybrid powertrain makes possible to fly at zero emissions for a much longer time, or with a much heavier payload. On the other hand, the packaging of a hybrid powertrain into existing aircraft requires a specific design of the thermal engine, that must be light, compact, highly reliable and fuel efficient.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Technical Paper

Energy Self Sufficient Aircrafts Can Become Reality through New Propulsion Design Approaches

2015-09-15
2015-01-2484
This paper focuses on the key problem of future aeronautics: which relates on energy efficiency and environmental footprint on a scientific point of view. Reducing emissions and increasing the energy efficiency would be both a key element to propel the market and increase the diffusion of personal aerial transport against ground transportation. Novel vehicle concepts and systems will be necessary to propel this innovation which could revolutionize our way of moving. This paper approaches an energetic preliminary design of a vehicle concept which could fulfill this social and cultural objective. Low cost energy efficient vehicles, which could be suitable for personal use with a high economic efficiency and without needs of airports, seem actually a real dream. Otherwise, is it a feasible goal or a scientific dream? Otherwise, a design method based on first and second law and thermodynamic and constructal law could allow reaching those goals.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Increasing Aeronautic Electric Propulsion Performances by Cogeneration and Heat Recovery

2014-09-16
2014-01-2106
Emissions from aviation have become a focus of increasing interest in recent years. The growth of civil aviation is faster than nearly all other economic sectors. Increased demand has led to a higher growth rate in fossil fuels consumption by the aviation sector. Despite more fuel-efficient and less polluting turbofan and turboprop engines, the growth of air travel contributes to increase pollution attributable to aviation. Aircraft are currently the only human-made in situ generators of emissions in the upper troposphere and in the stratosphere. The depletion of the stratosphere's ozone layer by CFCs and related chemicals has underscored the importance of anticipating other potential insults to the ozone layer. Different possible solutions have been advanced to reduce the environmental impact of aviation, such as electrification of ground operations, optimization of airline timetables and airspace usage, limitation of cruise altitude and increased use of turboprop aircrafts.
Technical Paper

Infrared Piloted Autonomous Landing: System Design and Experimental Evaluation

2014-09-16
2014-01-2196
This paper introduces a new equipment, which allows autonomous landing and docking of a VTOL aircraft and any mobile system. It has been studied and developed inside the MAAT (Multibody Advanced Airship for Transport) EU FP7 project to control autonomous docking of manned cruiser and feeder airships in movement. After a detailed analysis it has been verified that It could be considered a technological spin off the MAAT project. It defines a new instrumental system for governing relative positioning between a movable target and VTOL air vehicles, such as helicopters, airships and multi-copters. This solution is expected to become a short time to market equipment for helicopters (both manned and unmanned) ensuring autonomous landing ability even in case of low visibility. Infrared emitters allow controlling both position and yaws angle. It is in advanced testing phase after a preliminary successful testing using a quadcopter.
Technical Paper

MAAT Cruiser/Feeder Project: Criticalities and Solution Guidelines

2011-10-18
2011-01-2784
MAAT project is a large airship project presented to the last European 7 Framework Program Transport including Aeronautics 2011 deadline. MAAT project is an airship based cruiser-feeder transport system. This paper analyzes the criticalities of the project and the way to upfront these problems which have different natures and possible solutions. Most important criticalities are analyzed both on a methodological point of view and on a direct point of view. Enhanced design methodologies are analyzed in depth to analyze problems, upgrade the project design status continuously and to examine different design options and solutions. An innovative design method has been defined to avoid that problems can produce show stoppers and minimize time delays during project definition.
Technical Paper

Multifunctional Unmanned Reconnaissance Aircraft for Low-Speed and STOL Operations

2015-09-15
2015-01-2465
This paper presents a novel UAS (Unmanned Aerial System) designed for excellent low speed operations and VTOL performance. This aerial vehicle concept has been designed for maximizing the advantages by of the ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle) propulsion system, which has been studied in a European commission under 7th framework programme. This UAS concept has been named MURALS (acronym of Multifunctional Unmanned Reconnaissance Aircraft for Low-speed and STOL operation). It has been studied as a joint activity of the members of the project as an evolution of a former concept, which has been developed during 80s and 90s by Aeritalia and Capuani. It has been adapted to host an ACHEON based propulsion system. In a first embodiment, the aircraft according to the invention has a not conventional shape with a single fuselage and its primary objective is to minimize the variation of the pitching moment allowing low speed operations.
Technical Paper

Preliminary Implementation Study of ACHEON Thrust and Vector Electrical Propulsion on a STOL Light Utility Aircraft

2015-09-15
2015-01-2422
One of the best airplanes ever realized by the European Aircraft industry was the Dornier Do 28D Skyservant, an extraordinary STOL light utility aircraft with the capability to carry up to 13 passengers. It has been a simple and rugged aircraft capable also of operating under arduous conditions and very easy and simple maintenance. The architecture of this airplane, which has operated actively for more than 20 years, is very interesting analyzing the implementation of a new propulsion system because of the unusual incorporation of two engines, as well as the two main landing gear shock struts of the faired main landing gear attached to short pylons on either side of the forward fuselage. This unconventional design allows an easy implementation of different propulsion units, such as the history of different experimental versions allowed.
Technical Paper

Roto-Cycloid Propelled Airship Dimensioning and Energetic Equilibrium

2014-09-16
2014-01-2107
Rotocycloid propulsion presents interesting performance as a possible long-term alternative to helicopters in a far future. It will lead to increase the energy efficiency of VTOL vehicles. This paper focuses on optimization of an airship with the possibility up to 2000 h/year of photovoltaic propelled flight at a cruise speed about 20 m/s. This paper demonstrates the feasibility of this airship concept and presents a full dimensioning according to the CDE (Constructal Design for Efficiency) developed at University of Modena and Reggio Emilia. The proposed solution has been deeply analyzed and the analysis of performances has been presented. The results allow thinking to a novel class of vehicles designed specifically to take the maximum advantage by this propulsion method.
X