Refine Your Search

Topic

Author

Search Results

Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
Technical Paper

An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions

2013-04-08
2013-01-1676
Compared to the gasoline engine, the diesel engine has the advantage of being more efficient and hence achieving a reduction of CO₂ levels. Unfortunately, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are high. To overcome these drawbacks, several new combustion concepts have been developed, including the PCCI (Premixed Charge Compression Ignition) combustion mode. This strategy allows a simultaneous reduction of NOx and soot emissions through the reduction of local combustion temperatures and the enhancement of the fuel/air mixing. In spite of PCCI benefits, the concept is characterized by its high combustion noise levels. Currently, a promising way to improve the PCCI disadvantages is being investigated. It is related with the use of low cetane fuels such as gasoline and diesel-gasoline blends.
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

An Investigation of the Engine Combustion Network ‘Spray B’ in a Light Duty Single Cylinder Optical Engine

2018-04-03
2018-01-0220
Engine Combustion Network promotes fundamental investigations on a number of different spray configurations with the goal of providing experimental results under highly controlled conditions for CFD validation. Most of the available experiments up to now have been obtained in spray vessels, which miss some of the interactions governing spray evolution in the combustion chamber of an engine, such as the jet wall interaction and the transient conditions in the combustion chamber. The main aim of the present research is to compare the results obtained with a three-hole, 90 μm injector, known as ECN’s Spray B, in these constant-volume vessels and more recent Heavy-Duty engines with those obtained in a Light Duty Single Cylinder Optical Engine, under inert and reactive conditions, using n-dodecane. In-cylinder conditions during the injection were estimated by means of a 1-D and 0-D model simulation, accounting for heat transfer and in-cylinder mass evolution.
Technical Paper

Assessment of the Ignition System Requirement on Diluted Mixture Spark Engines

2020-04-14
2020-01-1116
In order to face the new challenges, spark ignition engines are evolving by following some strategies and technologies. Among them, alternative combustion processes based on the dilution of the homogeneous mixture, either with fresh air or with Exhaust Gas Recirculation (EGR), are being explored. In a higher or lower extent, these changes modify in-cylinder thermodynamic conditions during the engine operation (pressure, temperature and gas composition) thus conditioning the spark ignition system requirements that will have to evolve to become more reliable and powerful. In this framework, an experimental study on the effect of the key in-cylinder conditions on the ignition system performance has been carried out in a single-cylinder spark-ignition (SI) research engine. The study includes EGR, lambda and energizing time sweeps to assess the behavior of the engine in different operating conditions.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

Challenges and Directions of Using Ammonia as an Alternative Fuel for Internal Combustion Engines

2023-04-11
2023-01-0324
In recent decades, the importance of emerging alternative fuels has increased significantly as a solution to the problems of global warming and air pollution from energy production. In this context, ammonia (NH3) is seen as a potential option and energy vector that may be able to overcome the technical challenges associated with the use of other carbon-free fuels such as hydrogen (H2) in internal combustion engines (ICE). In this research, a numerical methodology for evaluating the impact of using ammonia as a fuel for spark-ignition ICEs has been developed. A combination of a single-cylinder and multi-cylinder numerical experiments has been performed to identify the main challenges and determine correct engine configuration. In addition, the performance of the engine has been evaluated through standard homologation driving cycles, contrasting it with other alternative propulsion configurations.
Technical Paper

Combined CFD - PIV Methodology for the Characterization of Air Flow in a Diesel Engine

2018-09-10
2018-01-1769
It is known that in-cylinder airflow structures during intake and compression strokes deeply affects the combustion process in compression ignition (CI) engines. This work presents a methodology for the analysis of the swirling structures by means of the CFD proprietary code Converge 2.3. The methodology is based on the CFD modelling and the comparison of results with in-cylinder velocity fields measured by particle image velocimetry (PIV). Furthermore, the analysis is extended to the accuracy evaluation of other methods available to define the flow in the cylinder of internal combustion engines, such as experiments in steady flow rigs. These methods, in junction with simple phenomenological models, have been traditionally used to determine some of the fundamental variables that define the in-cylinder flow in ICE engines. The CFD analysis is focused in the flow structures around top dead centre (TDC) at the end of the compression stroke.
Technical Paper

Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021-09-05
2021-24-0038
The reduction of carbon footprint of compression ignition engines for road transport makes it necessary to search for clean fuels alternative to diesel and to evaluate them under engine conditions. For this reason, in this paper, the combustion behaviour of different blends of synthetic fuels has been analyzed in an optical single cylinder engine of Medium Duty size (0,8 liters per cylinder) by means of optical techniques. The aim is to evaluate the effect of synthetic fuels, both partly or completely fossil diesel, in terms of combustion behaviours and soot formation. Therefore, different blends of oxymethylene dimethyl ether (OMEX) with diesel and neat hydrotreated vegetable oil (HVO) were studied. A conventional common rail injection system and a single injection strategy was used. In addition, special care was taken to ensure that conditions inside the engine cylinder at the injection start were as close as possible to the conditions used in previous studies.
Journal Article

Comparison of the Diffusive Flame Structure for Dodecane and OMEX Fuels for Conditions of Spray A of the ECN

2020-09-15
2020-01-2120
A comparison of the flame structure for two different fuels, dodecane and oxymethylene dimethyl ether (OMEX), has been performed under condition of Spray A of the Engine Combustion Network (ECN). The experiments were carried out in a constant pressure vessel with wide optical access, at high pressure and temperature and controlled oxygen concentration. The flame structure analysis has been performed by measuring the formaldehyde and OH radical distributions using planar Laser-Induced Fluorescence (PLIF) techniques. To complement the analysis, this information was combined with that obtained with high-speed imaging of OH* chemiluminescence radiation in the UV. Formaldehyde molecules are excited with the 355-nm radiation from the third harmonic of a Nd:YAG laser, whilst OH is excited with a wavelength of 281.00-nm from a dye laser.
Technical Paper

Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines

2021-04-06
2021-01-0413
In recent years, the automotive industry has been increasingly committed to developing new solutions for better and more efficient engines. One of them is the use of new insulating materials (thermal conductivity < 0.4 W/m-K, heat capacitance < 500 kJ/m3-K) to coat the engine combustion chamber walls, as well as the exhaust manifold. The main idea when coating the combustion chamber with these materials is to obtain a reduction of the temperature difference (thermal swing) between gas and walls during the engine cycle and minimize heat losses. Experimental measurements of the possible performance improvements are very difficult to obtain, mainly because the techniques available to measure wall temperature are limited. Therefore, simulations are typically used to investigate insulated combustion chambers. Nevertheless, the new generation of insulating coatings is posing challenges to numerical modelling, as layer thickness is very small (~100 μm).
Technical Paper

Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles

2018-04-03
2018-01-1413
The combination of more strict regulation for pollutant and CO2 emissions and the new testing cycles, covering a wider range of transient conditions, makes very interesting the development of predictive tools for engine design and pre-calibration. This paper describes a new integrated Virtual Engine Model (VEMOD) that has been developed as a standalone tool to simulate new standard testing cycles. The VEMOD is based on a wave-action model that carries out the thermo-and fluid dynamics calculation of the gas in each part of the engine. In the model, the engine is represented by means of 1D ducts, while the volumes, such as cylinders and reservoirs, are considered as 0D elements. Different sub-models are included in the VEMOD to take into account all the relevant phenomena. Thus, the combustion process is calculated by the Apparent Combustion Time (ACT) 1D model, responsible for the prediction of the rate of heat release and NOx formation.
Technical Paper

Dual-Fuel Ethanol-Diesel Technology Applied in Mild and Full Hybrid Powertrains

2019-09-09
2019-24-0115
The increasingly stringent emissions regulations together with the demand of highly efficient vehicles from the customers, lead to rapid developments of distinct powertrain solutions, especially when the electrification is present in a certain degree. The combination of electric machines with conventional powertrains diversifies the powertrain architectures and brings the opportunity to save energy in greater extents. On the other hand, alternative combustion modes as reactivity controlled compression ignition (RCCI) have shown to provide simultaneous ultra-low NOx and soot emissions with similar or better thermal efficiency than conventional diesel combustion (CDC). In addition, it is necessary to introduce more renewable fuels as ethanol to reduce the total CO2 emitted to the atmosphere, also called well-to-wheel (WTW) emission, in the transport sector.
Technical Paper

Engine Combustion Hardware Diagnostics in an End-of-Line Cold Test Stand

2022-03-29
2022-01-0270
Internal combustion engines must be individually tested at the end of the manufacturing process. In recent years classical hot test stands, where the engine is run for several minutes, are being replaced by cold test alternatives. The latter allow fast testing cycles using an external motoring device without using any fuel. The absence of fuel and combustion lowers the health and safety requirements for the plant itself and subsequent engine transport, but this comes at the cost of additional difficulties for the verification of the correct assembly and operation of the combustion system hardware. This paper presents a cold test concept, which includes dedicated measurements and algorithms for the detection of common failures in the manufacturing process, including those of the combustion hardware.
Technical Paper

Evaluating the Efficiency of a Conventional Diesel Oxidation Catalyst for Dual-Fuel RCCI Diesel-Gasoline Combustion

2018-09-10
2018-01-1729
Reactivity controlled compression ignition (RCCI) combustion has demonstrated to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with similar or better thermal efficiency than CDC under a wide variety of engine platforms. However, a major challenge of this concept comes from the high hydrocarbon (HC) and carbon monoxide (CO) emission levels, which are orders of magnitude higher than CDC and similar to those of port fuel injected (PFI) gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures during RCCI operation present a challenge for current exhaust aftertreatment technologies. RCCI has been successfully implemented on different compression ignition engine platforms with only minor modifications on the combustion system to include a PFI for feeding the engine with the low reactivity fuel.
Technical Paper

Evaluation of Emissions and Performances from Partially Premixed Compression Ignition Combustion using Gasoline and Spark Assistance

2013-04-08
2013-01-1664
Several new combustion concepts have been developed during last decade with the aim of reducing pollutant emissions. Specifically, these strategies allow a simultaneous reduction of NOx and soot emissions by reducing the local combustion temperatures, enhancing the fuel/air mixing (PCCI, HCCI…). In spite of their benefits, these concepts present difficulties controlling the appropriate combustion phasing as well as high knocking levels and therefore, their operating range is reduced to low-medium loads. In this work gasoline is considered as a fuel in order to improve combustion strategies based on fully or partially premixed combustion in CI engines. Its use provides more flexibility to achieve lean and low combustion temperature, however the concept has demonstrated difficulty under light load conditions using gasoline with ON up to 95.
Technical Paper

Evaluation of Neat Methanol as Fuel for a Light-Duty Compression Ignition Engine

2023-08-28
2023-24-0047
Methanol is currently being evaluated as a promising alternative fuel for internal combustion engines, due to being attainable by carbon neutral or negative pathways (renewable energy and carbon capture technology). The low ignitability of methanol has made it attractive mostly as a fuel for spark ignition engines, however the low sooting properties of the fuel could potentially reduce the NOx-soot tradeoff present in compression ignition engines. In this work, using a 4-cylinder engine with compression ratio modified from 16:1 to 19:1, methanol combustion is evaluated under five operating conditions in terms of fuel consumption, criteria pollutants, CO2 emissions and engine efficiency in addition to the qualitative assessment of the combustion stability. It was found that combustion is stable at medium to high loads, with medium load NOx emissions levels at least 30% lower than the original diesel engine and comparable emissions at maximum load conditions.
X