Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration

1984-10-01
841656
This paper reports on the injuries to the head, neck and thorax of fifteen child surrogates, subjected to varying levels of sudden acceleration. Measured response data in the child surrogate tests and in matched tests with a three-year-old child test dummy are compared to the observed child surrogates injury levels to develop preliminary tolerance data for the child surrogate. The data are compared with already published data in the literature.
Technical Paper

A Calibration Study of CFD for Automotive Shapes and CD

1994-03-01
940323
An extensive calibration study has been initiated to assess the predictive ability of CFD (Computational Fluid Dynamics) for the aerodynamic design of automotive shapes. Several codes are being checked against a set of detailed wind tunnel measurements on ten car-like shapes. The objective is to assess the ability of numerical analysis to predict the CD (drag coefficient) influence of the rear end configuration. The study also provides a significant base of information for investigating discrepancies between predicted and measured flow fields and for assessing new numerical techniques. This technical report compares STAR-CD predictions to the wind tunnel measurements. The initial results are quite encouraging. Calculated centerline pressure distributions on the front end, underbody and floor compare well for all ten shapes. Wake flow structures are in reasonable agreement for many of the configurations. Drag, lift, and pitching moment trends follow the experimental measurements.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Technical Paper

A Discussion of Aerodynamic Interference Effects Between a Race Car and a Race Track Retaining Wall (A Wind Tunnel NASCAR Case Study)

1988-02-01
880458
This report should not be looked upon as an end in itself, but rather as a thought provoker. It raises the question that there may be an additional dimension to race car aerodynamics other than just open roadway drag reduction, stability and handling performance. Some situations are seldom considered, nor even addressed, in public forums. Based upon wind tunnel test data, the authors show, at least for this one test setup, that significantly large changes in aerodynamic forces can be generated on a NASCAR stock car racer by its close proximity to the stationary retaining wall around a race track.
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects

1993-10-01
932705
A model is presented which incorporates the key mechanisms in the formation and reduction of unburned HC emissions from spark ignited engines. The model includes the effects of piston crevice volume, oil layer absorption / desorption, partial burns, and in-cylinder and exhaust port oxidation. The mechanism for the filling and emptying of the piston crevice takes into account the location of the flame front so that the flow of both burned gas and unburned gas is recognized. Oxidation of unburned fuel is calculated with a global, Arrhenius-type equation. A newly developed submodel is included which calculates the amount of unburned fuel to be added to the cylinder as a result of partial burns. At each crankangle, the submodel compares the rate of change of the burned gas volume to the rate of change of the cylinder volume.
Technical Paper

A Front Rail Design for Efficient Crush Energy Absorption

1995-10-31
1995-20-0016
Although there was a safety awareness from the earliest days of the automobile, systematic approaches to designing for safety became more widespread after 1950 when large numbers of vehicles came into use in both the United States and Europe, and governments in both continents undertook a widespread highway development. Industry response to safety objectives and also to government regulation has produced a large number of safety enhancing engineering developments, including radial tires, disc brakes, anti-lock brakes, improved vehicle lighting systems, better highway sign support poles, padded instrument panels, better windshield retention systems, collapsible hood structures, accident sensitive fuel pump shut-off valves, and other items. A significant development was the design of the energy absorbing front structures.
Technical Paper

A Gasoline Engine Cycle that Permits High Expansion Operation with Reduced Part Load Throttling Losses by Modulating Charge Mass and Temperature

1986-02-01
860327
A four-stroke, spark-ignition engine is described that seeks to achieve high expansion ratio and low throttling losses at light load, whilst retaining good knock resistance at full load operation and without the need for expensive mechanical changes to the engine. The engine does, however, incorporate a second inlet (transfer) valve and associated transfer port linked to the intake port. The timing of the transfer valve is different from that of the main inlet valve. Load modulation is achieved by control of the gas outflow from the transfer port. A computer model of the engine is first validated against measured data from a conventional engine. Comparisons are made of incylinder pressure at part load conditions, total air flowrate through the engine and intake port air velocities as a function of crank angle position.
Technical Paper

A Method to Measure Air Conditioning Refrigerant Contributions to Vehicle Evaporative Emissions (SHED Test)

1999-05-03
1999-01-1539
Although the intent of the SHED test (Sealed Housing for Evaporative Determination) is to measure evaporative fuel losses, the SHED sampling methodology in fact measures hydrocarbons from all vehicle and test equipment sources. Leakage of air conditioning (AC) refrigerant is one possible non-fuel source contributing to the SHED hydrocarbon measurement. This report describes a quick and relatively simple method to identify the contribution of AC refrigerant to the SHED analyzer reading. R134A (CH2FCF3), the hydrofluorocarbon refrigerant used in all current automotive AC systems, as well as its predecessor, the chlorofluorocarbon R12, can be detected using the gas chromatography methods currently in place at many emissions labs for the speciation of exhaust and evaporative hydrocarbon emissions.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

A Study of Ignition System Effects on Power, Emissions, Lean Misfire Limit, and EGR Tolerance of a Single-Cylinder Engine-Multiple Spark versus Conventional Single Spark Ignition

1974-02-01
740188
The characteristics of multiple spark ignition systems with respect to engine performance, emissions, lean misfire, and tolerance to exhaust gas recirculation (EGR) have been investigated using a carbureted single-cylinder engine. The results, which were compared to those obtained with a standard single spark ignition system, show that both lean misfire limit and EGR tolerance are extended with the multiple spark system. The amount of extension varies with engine load, being largest at the lighter loads studied. Engine power and emissions at non-misfiring conditions are the same with both ignition systems.
Technical Paper

A Time-Domain Fatigue Life Prediction Method for Vehicle Body Structures

1996-02-01
960567
Fatigue analysis using finite element models of a full vehicle body structure subjected to proving ground durability loads is a very complex task. The current paper presents an analytical procedure for fatigue life predictions of full body structures based on a time-domain approach. The paper addresses those situations where this kind of analysis is necessary. It also discusses the major factors (e.g., stress equivalencing procedure, cycle counting method, event lumping and load interactions) which affect fatigue life predictions in the procedure. A comparison study is conducted which explores the combination of these factors favorable for realistic fatigue life prediction. The concepts are demonstrated using a body system model of production size.
Technical Paper

A Vehicle Micro Corrosion Environmental Study of Field and Proving Ground Tests

2001-03-05
2001-01-0646
This paper presents the progress of an ongoing vehicle micro corrosion environment study. The goal of the study is to develop an improved method for estimating vehicle corrosion based on the Total Vehicle Accelerated Corrosion Test at the Arizona Proving Ground (APG). Although the APG test greatly accelerates vehicle corrosion compared to the field, the “acceleration factor” varies considerably from site-to-site around the vehicle. This method accounts for the difference in corrosivity of various local corrosion environments from site-to-site at APG and in the field. Correlations of vehicle microenvironments with the macroenvironment (weather) and the occurrence of various environmental conditions at microenvironments are essential to the study. A comparison of results from APG versus field measurements generated using a cold rolled steel based corrosion sensor is presented.
Technical Paper

ACT - Ford's Automatically Controlled Transportation System

1974-02-01
740226
This paper contains a technical description of the Ford Motor Co.'s ACT system which has been designed to meet transportation needs in a wide variety of urban applications. The discussion covers the systems design features and operation of the driverless rubber-tired vehicles, the guideway, and the system's ability to meet expanding needs by a modular approach to the command and control design. Descriptions of Ford's new Cherry Hill Test Track and the first installations at the Fairlane Town Center in Dearborn, Mich., and the Bradley International Airport, Hartford, Conn., are also presented.
Technical Paper

Activated Carbon Canister Performance During Diurnal Cycles: An Experimental and Modeling Evaluation

1997-05-01
971651
A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. Diurnal temperature cycles cause the fuel tank to breathe the fuel vapor in and out, and thus the activated carbon canister is constantly loading and purging the hydrocarbon vapors. This paper discusses a study undertaken at Ford to evaluate the relationship between carbon canister condition and fuel tank vapor generation during diurnal cycles. The results of an extensive set of experiments are presented, and the data from these experiments are compared to the output of a fuel vapor system model also developed at Ford. Key parameters relating to the migration of hydrocarbons during the experimental conditions studied, including initial canister condition, canister volume, and canister geometry, are discussed.
Technical Paper

Additional Notes on Finite Element Models of Deformable Featureless Headform

1997-02-24
970164
Model characteristics of a finite element deformable featureless headform with one to four layers of solid elements for the headform skin are studied using both the LS-DYNA3D and FCRASH codes. The models use a viscoelastic material law whose constitutive parameters are established through comparisons of drop test simulations at various impact velocities with the test data. Results indicate that the one-layer model has a significant distinct characteristic from the other (2-to-4-layer) models, thus requiring different parametric values. Similar observation is also noticed in simulating drop tests with one and two layers of solid elements for the headform skin using PAM-CRASH. When using the same parametric values for the viscoelastic material, both the LS-DYNA3D and FCRASH simulations yield the same results under identical impact conditions and, thereby, exhibit a “functional equivalency” between these two codes.
Technical Paper

Agile Metrology: The Next Generation of Measuring Machines

1996-05-01
961644
All dimensional measurement systems, including Coordinate Measuring Machines (CMMs), share certain common characteristic elements. These systems include one or more of the following items: a sensor, a mechanism for supporting the sensor, a device for moving the support mechanism, a technique for planning how the support mechanism will be moved, and a device for analyzing sensor data. By recognizing these common features and capitalizing on the benefits of modularity and interchangeability of these features, the next generation of measuring machines will be able to easily accommodate new sensor technology and to meet the changing demands placed on dimensional inspection processes quickly and cost effectively.
X