Refine Your Search

Topic

Search Results

Technical Paper

8×8 Platform for Studing Terrain Mobility and Traction Performance of Unmanned Articulated Ground Vehicles with Steered Wheels

2013-09-24
2013-01-2356
Two characteristics of terrain mobility are essential in designing an unmanned ground vehicle (UGV): (i) the ability of a vehicle to move through terrain of a given trafficability and (ii) the obstacle performance, i.e., the ability to avoid, interact with and overcome obstacles encountered on a preset route of a vehicle. More attention has been given to the vehicle geometry including selection of the angles of approach and departure, radii of longitudinal and lateral terrain mobility, and the steering system configuration. An essential effect is exhibited by the tire properties in their interaction with the support surface; this, in turn, affects traction properties of the wheel and, thus, vehicle terrain mobility. However, the influence of power distribution between the driving wheels together with vehicle steering system on the two above-listed characteristics of terrain mobility has not been considered in depth.
Technical Paper

A NASS-Based Investigation of Pelvic Injury within the Motor Vehicle Crash Environment

1996-11-01
962419
Automotive collision data from the National Accident Sampling System database (compiled by the National Highway Traffic Safety Administration) was analyzed in regard to occupants who sustained major pelvic injuries during 1980-1992. These injuries included pelvic fracture, pelvic dislocation, pelvic separation, pelvic crush, and pelvic fracture/dislocation. All collisions analyzed were required to have a computed change in velocity during the collision, as well as data concerning injuries sustained by the occupants. The purpose of this research was to retrospectively analyze motor vehicle crash data to establish incidence of major pelvic injuries within automotive collisions. From the study, 1.8% of all collisions evaluated resulted in major pelvic injuries. Twenty-two percent of all crashes were side impact collisions and 8% of these side impact collisions resulted in occupants sustaining major pelvic injuries.
Journal Article

A Virtual Driveline Concept to Maximize Mobility Performance of Autonomous Electric Vehicles

2020-04-14
2020-01-0746
In-wheel electric motors open up new prospects to radically enhance the mobility of autonomous electric vehicles with four or more driving wheels. The flexibility and agility of delivering torque individually to each wheel can allow significant mobility improvements, agile maneuvers, maintaining stability, and increased energy efficiency. However, the fact that individual wheels are not connected mechanically by a driveline system does not mean their drives do not impact each other. With individual torques, the wheels will have different longitudinal forces and tire slippages. Thus, the absence of driveline systems physically connecting the wheels requires new approaches to coordinate torque distribution. This paper solves two technical problems. First, a virtual driveline system (VDS) is proposed to emulate a mechanical driveline system virtually connecting the e-motor driveshafts, providing coordinated driving wheel torque management.
Technical Paper

AUTOSAR on the Road

2008-10-20
2008-21-0019
The AUTomotive Open System ARchitecture (AUTOSAR) Development Partnership has published early 2008 the specifications Release 3.0 [1], with a prime focus on the overall architecture, basic software, run time environment, communication stacks and methodology. Heavy developments have taken place in the OEM and supplier community to deliver AUTOSAR loaded cars on the streets starting 2008 [2]. The 2008 achievements have been: Improving the specifications in order to secure the exploitation for body, chassis and powertrain applications Adding major features: safety related functionalities, OBD II and Telematics application interfaces.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Journal Article

Advanced Lost Foam Casting Processes and Materials

2009-04-20
2009-01-0213
The lost foam casting process (LFCP) is a near-net shape casting process. This process is the most energy efficient casting process available. “Foundry Management and Technology” magazine analyzed the lost foam process and reported a 27% energy savings, a 46% improvement in labor productivity and 7% less material usage compared to other casting processes. The LFCP produces high value parts by combining multiple components into single castings, improving energy efficiency by achieving better metal yields, reducing materials consumption by eliminating cores, providing minimal post casting processing and improving as-cast dimensional accuracy. All of these process features reduce the total energy consumed during manufacturing.
Technical Paper

An Active Long-Travel, Two Performance Loop Control Suspension of an Open-Link Locomotion Module for Off-Road Applications

2014-09-30
2014-01-2288
An open-link locomotion module (OLLM) is an autonomous energy self-sufficient locomotion setup for designing ground wheeled vehicles of a given configuration that includes drive/driven and steered/non-steered wheels with individual suspension and brake systems. Off-road applications include both trucks and trailers. The paper concentrates on the module's electro-hydraulic suspension design and presents results of analytical and experimental studies of a trailer with four driven (no wheel torque applied) open-link locomotion modules. On highly non-even terrain, the suspension design provides the sprung mass with sufficient vibration protection at low level of normal oscillations, enhanced damping and stabilized angular movements. This is achieved by the introduction of two control loops: (i) a fast-acting loop to control the damping of the normal displacements; and (ii) a slow-acting control loop for varying the pressure and counter-pressure in the suspension system.
Technical Paper

An Encoding Scheme for Reporting Sensor Signal Values

2005-04-11
2005-01-1366
This paper presents a novel encoding scheme as an alternative to Analog amplitude encoding for communicating sensor signals. The scheme has the potential of becoming a non-proprietary industrial standard for communicating sensor information to electronic control modules. Key features of the encoding scheme are the ability to communicate two sensor values using only 3 wires (power, ground and signal) with 12 bit resolution within 1ms. The scheme includes a checksum for error detection and a mechanism for reporting serial data such as low rate sensor information, part numbers or fault codes. Data is communicated to the receiving module by varying the time between discrete (single edge polarity) transitions. The encoding is self-calibrating and does not require an expensive crystal in the sending module (assumed to be a low-cost ASIC) to maintain signal integrity.
Technical Paper

Analysis of Crank Angle Resolved In-Cylinder Combustion Modeling for Real Time Diesel Engine Simulations

2015-09-06
2015-24-2394
Mainly due to environmental regulation, future Engine Control Unit (ECU) will be equipped with in-cylinder pressure sensors. The introduction of this innovative solution has increased the number of involved variables, requiring an unceasing improvement in the modeling approaches and in the computational capabilities of Engine Control Unit (ECU). Hardware in the Loop (HIL) test system therefore has to provide in-cylinder pressure in real time from an adequate model. This paper describes a synthesis of our study targeted to the development of in-cylinder crank angle combustion model excluding look up tables, dedicated to HIL test bench. The main objective of the present paper is a comprehensive analysis of a reduced combustion model, applied to a direct injection Diesel engine at varying engine operating range, including single injection and multi injection strategies.
Technical Paper

Anomaly Detection Using Convolutional Neural Network and Generative Adversarial Network

2023-04-11
2023-01-0590
In the automotive embedded system domain, the measurements from vehicle and Hardware-In-Loop are currently evaluated against the testcases, either manually or via automation scripts. These evaluations are localized; they evaluate a limited number of signals for a particular measurement without considering system-level behavior. This results in defect leakage. This study aims to develop a tool that can notify anomalies at the signal level in a new measurement without referring to the testcases, considering a more significant number of system-level signals, thereby significantly reducing the defect leakage. The tool learns important features and patterns of each maneuver from many historical measurements using deep learning techniques. We tried two CNN (convolution neural network) models. The first one is a specially designed CNN that does this maneuver classification and class-specific feature extraction.
Technical Paper

Dynamic Formulation of the Utility Truck with the Morphing Boom Equipment

2022-03-29
2022-01-0917
Robotic technology has begun to play an essential role in ground automotive applications. Utility trucks are among the first responders in extreme climate and severe weather conditions, comprised of two systems: a mobile platform and an articulated robotic morphing arm. The conventional industrial manipulators are mounted on stationary bases, while a mobile manipulator is dynamically coupled on a mobile platform. Such trucks with morphing manipulator can increase the possibility of road accidents in many ways and, additionally, create dangerous situations on the roads, and off-road conditions, while moving, and performing tasks. Large boom equipped trucks for reaching elevated heights can become unstable due to drastic variation of the boom equipment moment of inertia causing the extreme weight re-distribution among the wheels. The morphing capabilities of the utility trucks need to be investigated together with the vehicle-road forces in order to hold the truck safe on the roads.
Technical Paper

Field Test Experience of a Combined DPF and Urea-SCR System Achieving EPA'07 Emission Levels

2005-11-01
2005-01-3575
On-road emission measurements of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road, showed tailpipe NOx emissions on fleet average of 0.96 g/bhp-hr, or 1.06 g/bhp-hr when including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA -cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Journal Article

Fused Dynamics of Unmanned Ground Vehicle Systems

2014-09-30
2014-01-2322
Through inverse dynamics-based modeling and computer simulations for a 6×6 Unmanned Ground Vehicle (UGV) - a 6×6 truck - in stochastic terrain conditions, this paper analytically presents a coupled impact of different driveline system configurations and a suspension design on vehicle dynamics, including vehicle mobility, and energy efficiency. A new approach in this research work involves an estimation of each axle contribution to the level of potential mobility loss/increase and/or energy consumption increase/ reduction. As it is shown, the drive axles of the vehicle interfere with the vehicle's dynamics through the distribution of the wheels' normal reactions and wheel torques. The interference causes the independent system dynamics to become operationally coupled/fused and thus diminishes vehicle mobility and energy efficiency. The analysis is done by the use of new mobility indices and energy efficiency indices which are functionally coupled/fused.
Technical Paper

Gene-Based Detection of Microorganisms in Environmental Samples Using PCR

1997-07-01
972424
Contaminating microorganisms pose a serious potential risk to the crew's well being and water system integrity aboard the International Space Station (ISS). We are developing a gene-based microbial monitor that functions by replicating specific segments of DNA as much as 1012 x. Thus a single molecule of DNA can be replicated to detectable levels, and the kinetics of that molecule's accumulation can be used to determine the original concentration of specific microorganisms in a sample. Referred to as the polymerase chain reaction (PCR), this enzymatic amplification of specific segments of the DNA or RNA from contaminating microbes offers the promise of rapid, sensitive, quantitative detection and identification of bacteria, fungi, viruses, and parasites. We envision a small instrument capable of assaying an ISS water sample for 48 different microbes in a 24 hour period.
Technical Paper

Hybrid Electric Vehicle Battery Aging Estimation and Economic Analysis based on Equivalent Consumption Minimization Strategy

2017-03-28
2017-01-1251
This paper presents results on how the Equivalent Consumption Minimization Strategy (ECMS) penalty factor effects Lithium ion battery aging. The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’. Vehicle simulation using multiple combinations of highway and city drive cycles. For each combination of drive cycles, six ECMS penalty factor values are used. Battery aging is evaluated using a semi-empirical model combined with accumulated Ah-throughput method which uses, as an input, the battery state of charge trajectory from the vehicle simulations. The tradeoff between fuel cost and battery aging cost is explicitly displayed. In addition, the results provide insight into how driving behavior affects battery aging. The paper concludes with a discussion of the optimal balance between fuel cost and battery aging.
Technical Paper

Improving Reliability of 2 Wheelers Using Predictive Diagnostics

2023-10-24
2023-01-1836
The On-Board Diagnostics (OBD) system can detect problems with the vehicle’s engine, transmission, and emissions control systems to generate error codes that can pinpoint the source of the problem. However, there are several wear and tear parts (air filter, oil filter, batteries, engine oil, belt/chain, clutch, gear tooth) that are not diagnosed but replaced often or periodically in motorcycles/ power sports applications. Traditionally there is a lack of availability of in-field and on-board assistive tools to diagnose vehicle health for 2wheelers. An alert system that informs the riders about health and remaining useful life of their motorcycle can help schedule part replacements, ensuring they are always trip-ready and have a stress-free ownership and service experience. This information can also aid in the correct assessment during warranty claims.
Technical Paper

In-Line Microbial Monitor for the Analysis of Recycled Water Aboard the ISS: Issues and Prospects

1996-07-01
961568
The monitoring of spacecraft life support systems for the presence of health threatening microorganisms is paramount for crew well being and successful completion of missions. The union of the molecular biology techniques of DNA probe hybridization and polymerase chain reaction (PCR) offers a powerful method for the detection, identification, and quantification of microorganisms and viruses. This report is an evaluation of the state of PCR science as it applies to the needs of NASA to develop a microbiology monitor for use aboard spacecraft, and a set of recommendations as to the design of a PCR-based microbial monitor for recycled water aboard the ISS.
Technical Paper

Infrared Borescopic Analysis of Ignition and Combustion Variability in a Heavy-Duty Natural-Gas Engine

2018-04-03
2018-01-0632
Optical imaging diagnostics of combustion are most often performed in the visible spectral band, in part because camera technology is most mature in this region, but operating in the infrared (IR) provides a number of benefits. These benefits include access to emission lines of relevant chemical species (e.g. water, carbon dioxide, and carbon monoxide) and obviation of image intensifiers (avoiding reduced spatial resolution and increased cost). High-speed IR in-cylinder imaging and image processing were used to investigate the relationships between infrared images, quantitative image-derived metrics (e.g. location of the flame centroid), and measurements made with in-cylinder pressure transducers (e.g. coefficient of variation of mean effective pressure). A 9.7-liter, inline-six, natural-gas-fueled engine was modified to enable exhaust-gas recirculation (EGR) and provide borescopic optical access to one cylinder for two high-speed infrared cameras.
Technical Paper

Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines

2018-04-03
2018-01-1149
Natural gas (NG) is attractive for heavy-duty (HD) engines for reasons of cost stability, emissions, and fuel security. NG cannot be reliably compression-ignited, but conventional gasoline ignition systems are not optimized for NG and are challenged to ignite mixtures that are lean or diluted with exhaust-gas recirculation (EGR). NG ignition is particularly challenging in large-bore engines, where completing combustion in the available time is more difficult. Using two high-speed infrared (IR) cameras with borescopic access to one cylinder of an HD NG engine, the effect of ignition system on the early flame-kernel development and cycle-to-cycle variability (CCV) was investigated. Imaging in the IR yielded strong signals from water emission lines, which located the flame front and burned-gas regions and obviated image intensifiers. A 9.7-liter, six-cylinder engine was modified to enable exhaust-gas recirculation and to provide optical access.
Technical Paper

Lap-Shoulder Belt Performance as a Function of Occupant Size

2005-04-11
2005-01-1705
The Federal Motor Vehicle Safety Standards (FMVSS) require rear seat, lap/shoulder belts to “fit” Hybrid III dummies ranging in size from a 6 year old child (H3-6C) to a 95th-percentile-male (H3-95M). No dynamic performance FMVSS, however, exist for rear seat belt systems. Variations in the three-dimensional “fit” of the same lap-shoulder belt positioned around these extreme dummy sizes suggest a possible difference in performance. The purpose of this study was to assess the performance of two production lap-shoulder belt designs in a large SUV buck on a rebound sled using instrumented H3-6C, 5th-percentile-female (H3-5F) and H3-95M dummies. Sled velocities were approximately 35 kph. Test instrumentation included: lap and shoulder belt load transducers, triaxial accelerometers at the center of gravity of the head, triaxial accelerometers and a deflection gauge in the chest, and six-axis force (and moment) transducers in the neck of the dummy.
X